✔ 最佳答案
A random variable X assumes the value 1 with probability pai( the thing=3.1415) and 0 with probability (1-pai).Prove that E(X) = pai, Var (X) = pai(1 - pai).
E(X)= Σxp(x)=1*π+0*(1-π)=π
E(X^2)= Σx^2p(x)=1*π+0*(1-π)=π
Var (X) =E(X^2)-[E(X)]^2=π-π^2=π(1-π)