maths @!!! ergent

2007-10-01 1:10 am
if the eduation x[(2k-1)x+3]93k+1)+9 = 0 has 2 equal real roots, find
(a) the value of k
(b) the roots of tthe given equation

回答 (2)

2007-10-01 1:24 am
✔ 最佳答案
a) Do u mean x [ ( 2k - 1 )x + 3 ]( 3k + 1 ) + 9 = 0?

Rearranging,

( 2k - 1 )( 3k + 1 )x^2 + 3 ( 3k + 1 )x + 9 = 0

△ = 0 for the equation has 2 equal roots, so

[ 3 ( 3k + 1 )]^2 - 4 ( 2k - 1 )( 3k + 1 )( 9 ) = 0

( 3k + 1 )^2 - 4 ( 2k - 1 )( 3k + 1 ) = 0

( 3k + 1 )[ ( 3k + 1 ) - 4 ( 2k - 1 )] = 0

( 3k + 1 )( 3k + 1 - 8k + 4 ) = 0

( 3k + 1 )( -5k + 5 ) = 0

k = - 1 / 3 ( rejected ) or k = 1

k = -1 / 3 has to be rejected because the coefficient of x^2, ( 2k - 1 )( 3k + 1 ) will become 0 and this will not be a quadratic equation.

b) Then,

( 2 - 1 )( 3 + 1 )x^2 + 3 ( 3 + 1 )x + 9 = 0

4x^2 + 12x + 9 = 0

( 2x + 3 )^2 = 0

x = - 3 / 2


參考: My Maths Knowledge
2007-10-02 1:47 am
k = 1
x = - 3 / 2


收錄日期: 2021-04-13 13:41:12
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070930000051KK03380

檢視 Wayback Machine 備份