Solving Equations
Find the value of a, b, and c if ab+5=c; bc+1=a; ca+1=b.
回答 (2)
╭
│ab+5 = c
Solve─┤bc+1 = a
│ca+1 = b
╰
╭
│ab+5 = c……(1)
─┤bc+1 = a……(2)
│ca+1 = b……(3)
╰
(2)-(3): (bc+1)-(ca+1) = a-b
bc-ac+b-a = 0
c(b-a)+(b-a) = 0
(b-a)(c+1) = 0
b = a or c = -1
So 2 cases are divided:
Case 1: c = -1,
Put c = -1 into (1) and (3):
ab+5 = -1……(4)
(-1)a+1 = b
b = 1-a……(5)
Put (5) into (4):
a(1-a)+5 = -1
a-a²+5 = -1
a²-a-6 = 0
(a-3)(a+2) = 0
a = 3 or -2
When a = 3, b = 1-3 = -2
When a = -2, b = 1-(-2) = 1+2 = 3
Case 2: b = a,
Put b = a into (1) and (2):
aa+5 = c
c = a²+5……(6)
ac+1 = a……(7)
Put (6) into (7):
a(a²+5)+1 = a
a³+5a+1 = a
a³+4a+1 = 0
Let a = u+v,
Then u³+v³ = -1 and uv = -4/3
Hence u³+(-4/(3u))³ = -1
u³-64/(27u³) = -1
27u^6-64 = -27u³
27u^6+27u³-64 = 0
u³ = [-27±√(27²-4(27)(-64))]/(2(27))
u = ³√((-27±√7641)/54)
= ³√((-27±3√849)/54)
= ³√((-9±√849)/18)
When u = ³√((-9+√849)/18),
v = -4/[3[³√((-9+√849)/18)]]
= -4/³√[(27(-9+√849))/18]
= -4/³√[(3(-9+√849))/2]
= ³√[-128/(3(-9+√849))]
= ³√[(-128(-9-√849))/(3(-9+√849)(-9-√849))]
= ³√[(-128(-9-√849))/(-2304)]
= ³√((-9-√849)/18)
When u = ³√((-9-√849)/18),
v = -4/[3[³√((-9-√849)/18)]]
= -4/³√[(27(-9-√849))/18]
= -4/³√[(3(-9-√849))/2]
= ³√[-128/(3(-9-√849))]
= ³√[(-128(-9+√849))/(3(-9-√849)(-9+√849))]
= ³√[(-128(-9+√849))/(-2304)]
= ³√((-9+√849)/18)
由此可見,u和v是共軛,所以我哋只需選擇其中一組u, v的解即可。
Hence a = u+v or ωu+ω²v or ω²u+ωv,
where ω = e^(2iπ/3) = cos(2π/3) + i sin(2π/3) = -1/2+((√3)/2)i
∴a = ³√((-9+√849)/18)+ ³√((-9-√849)/18) or (-1/2+((√3)/2)i) ³√((-9+√849)/18)+(-1/2+((√3)/2)i)² ³√((-9-√849)/18) or (-1/2+((√3)/2)i)² ³√((-9+√849)/18)+(-1/2+((√3)/2)i) ³√((-9-√849)/18)
= ³√((-9+√849)/18)+ ³√((-9-√849)/18) or (-1/2+((√3)/2)i) ³√((-9+√849)/18)+(-1/2-((√3)/2)i) ³√((-9-√849)/18) or (-1/2-((√3)/2)i) ³√((-9+√849)/18)+(-1/2+((√3)/2)i) ³√((-9-√849)/18)
When a = ³√((-9+√849)/18)+ ³√((-9-√849)/18),
b = ³√((-9+√849)/18)+ ³√((-9-√849)/18)
c = [³√((-9+√849)/18)+ ³√((-9-√849)/18)]²+5
= ³√[((-9+√849)/18)²]+2 ³√[((-9+√849)/18)((-9-√849)/18)]+ ³√[((-9-√849)/18)²]+5
= ³√((81-18√849+849)/324)+ ³√(8(81-849)/324)+ ³√((81+18√849+849)/324)+5
= ³√((930-18√849)/324)+ ³√(-512/27)+ ³√((930+18√849)/324)+5
= ³√((155-3√849)/54)-8/3+ ³√((155+3√849)/54)+5
= 7/3+ ³√((155+3√849)/54)+ ³√((155-3√849)/54)
When a = (-1/2+((√3)/2)i) ³√((-9+√849)/18)+(-1/2-((√3)/2)i) ³√((-9-√849)/18),
b = (-1/2+((√3)/2)i) ³√((-9+√849)/18)+(-1/2-((√3)/2)i) ³√((-9-√849)/18)
c = [(-1/2+((√3)/2)i) ³√((-9+√849)/18)+(-1/2-((√3)/2)i) ³√((-9-√849)/18)]²+5
= (-1/2+((√3)/2)i)² ³√[((-9+√849)/18)²]+2(-1/2+((√3)/2)i)(-1/2-((√3)/2)i) ³√[((-9+√849)/18)((-9-√849)/18)]+(-1/2-((√3)/2)i)² ³√[((-9-√849)/18)²]+5
= 7/3+(-1/2+((√3)/2)i) ³√((155+3√849)/54)+(-1/2-((√3)/2)i) ³√((155-3√849)/54)
When a = (-1/2-((√3)/2)i) ³√((-9+√849)/18)+(-1/2+((√3)/2)i) ³√((-9-√849)/18),
b = (-1/2-((√3)/2)i) ³√((-9+√849)/18)+(-1/2+((√3)/2)i) ³√((-9-√849)/18)
c = [(-1/2-((√3)/2)i) ³√((-9+√849)/18)+(-1/2+((√3)/2)i) ³√((-9-√849)/18)]²+5
= (-1/2-((√3)/2)i)² ³√[((-9+√849)/18)²]+2(-1/2-((√3)/2)i)(-1/2+((√3)/2)i) ³√[((-9+√849)/18)((-9-√849)/18)]+(-1/2+((√3)/2)i)² ³√[((-9-√849)/18)²]+5
= 7/3+(-1/2-((√3)/2)i) ³√((155+3√849)/54)+(-1/2+((√3)/2)i) ³√((155-3√849)/54)
In conclusion,
╭
│a = 3
─┤b = -2
│c = -1
╰
or
╭
│a = -2
─┤b = 3
│c = -1
╰
or
╭
│a = ³√((-9+√849)/18)+ ³√((-9-√849)/18)
─┤b = ³√((-9+√849)/18)+ ³√((-9-√849)/18)
│c = 7/3+ ³√((155+3√849)/54)+ ³√((155-3√849)/54)
╰
or
╭
│a = (-1/2+((√3)/2)i) ³√((-9+√849)/18)+(-1/2-((√3)/2)i) ³√((-9-√849)/18)
─┤b = (-1/2+((√3)/2)i) ³√((-9+√849)/18)+(-1/2-((√3)/2)i) ³√((-9-√849)/18)
│c = 7/3+(-1/2+((√3)/2)i) ³√((155+3√849)/54)
│ +(-1/2-((√3)/2)i) ³√((155-3√849)/54)
╰
or
╭
│a = (-1/2-((√3)/2)i) ³√((-9+√849)/18)+(-1/2+((√3)/2)i) ³√((-9-√849)/18)
─┤b = (-1/2-((√3)/2)i) ³√((-9+√849)/18)+(-1/2+((√3)/2)i) ³√((-9-√849)/18)
│c = 7/3+(-1/2-((√3)/2)i) ³√((155+3√849)/54)
│ +(-1/2+((√3)/2)i) ³√((155-3√849)/54)
╰
收錄日期: 2021-04-18 23:24:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070927000051KK00929
檢視 Wayback Machine 備份