Factorization.. THX!!!

2007-09-22 8:13 pm
1. 99p^2 - (81q^2 - p^2)
2. 36p^2 - 60pq + 25q^2
3. 2y^2 - 18 - 9y
4. m^3 - 216n^3
5. 16 - 24(h - 5k) + 9(h - 5k)^2

回答 (2)

2007-09-22 8:44 pm
✔ 最佳答案
1)99p^2 - (81q^2 - p^2)
=99p^2 - 81q^2 + p^2
=100p^2 - 81q^2
=(10p)^2 - (9q)^2
=(10p + 9q)(10p - 9q)

2)36p^2 - 60pq + 25q^2
=(6p)^2 - 2(6p)(5q) + (5q)^2
=(6p - 5q)^2

3)2y^2 - 18 - 9y
=2y^2 - 9y - 18
=(2y + 3)(y - 6)

4) m^3 - 216n^3
=m^3 - (6n)^3
=(m - 6n)[m^2 + n(6m) + (6n)^2]
=(m - 6n)(m^2 + 6mn + 36n^2)

5) 16 - 24(h - 5k) + 9(h - 5k)^2
=4^2 - 2(4)[3(h - 5k)]+[3(h-5k)]^2
=[4-3(h-5k)]^2
=(4-3h+15k)^2
2007-09-22 9:00 pm
1. 99p^2 - (81q^2 - p^2)
=99p^2 - 81q^2 + p^2
=100p^2 - 81q^2
=(10p)^2 - (9q)^2
=(10p + 9q)(10p - 9q)

2. 36p^2 - 60pq + 25q^2
=(6p)^2 - 2(6)(5) + (5q)^2
=(6p - 5q)^2

3. 2y^2 - 18 - 9y
=(2y + 3)(y - 6)

4. m^3 - 216n^3
=m^3 - (6n)^3

5. 16 - 24(h - 5k) + 9(h - 5k)^2
=9(h-5k)^2 - 24(h - 5k) + 16
=[3(h-5k)]^2 - 2(3)(4)(h - 5k) + 4^2
=[3(h-5k) - 4]^2
=(3h-15k-4)^2
參考: 自己


收錄日期: 2021-04-25 19:52:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070922000051KK01612

檢視 Wayback Machine 備份