✔ 最佳答案
Let P ( n ) be the proposition
“(1/2)+(3/22)+(5/23)+....+(2n-1/2n)=3-(2n+3/2n)”.
When n = 1,
L.H.S. = ( 2 – 1 ) / 21 = 1 / 2
R.H.S. = 3 – ( 2 + 3 ) / 21 = 1 / 2 = L.H.S.
So P ( 1 ) is true.
Assume P ( k ) is true for some positive integers k, i.e.
(1/2)+(3/22)+(5/23)+....+(2k-1/2k)=3-(2k+3/2k)
When n = k + 1,
L.H.S. = (1/2)+(3/22)+(5/23)+....+(2k-1/2k) + (2k+2-1/2k+1)
= 3-(2k+3/2k) + (2k+2-1/2k+1)
= 3 –(2k+3/2k) + (2k+1/2k )( 1 / 2 )
= 3 + ( 1 / 2 )[ (2k+1)/2k – (4k+6)/2k ]
= 3 + ( 1 / 2 x 2k )( 2k + 1 – 4k – 6 )
= 3 + ( 1 / 2k+1 )( -2k – 5 )
= 3 – ( 2k + 5 ) / 2k+1
R.H.S. = 3 – ( 2k + 2 + 3 ) / 2k+1
= 3 – ( 2k + 5 ) / 2k+1
= L.H.S.
So P ( k + 1 ) is true.
By the principle of mathematical induction, P ( n ) is true for all positive integers n.
2)nC2 = 55
n! / 2! ( n – 2 )! = 55
( 1 / 2 )( n )( n – 1 ) = 55
n2 – n = 110
n2 – n – 110 = 0
( n – 11 )( n + 10 ) = 0
n = 11 or n = -10 ( rejected )
Hence n = 11.