a. maths 問題

2007-09-16 12:13 am
Prove the following by mathemtical induction, where n is a natural number.
1+3+5+...+(2n-1)=n^2
更新1:

RE:charles_0814 when n=2, L.H.S. =1 + (2n - 1) =1 + [2(2) - 1] =1 + (4 - 1) =4 =2^2 =R.H.S. 所以呢條題目係岩 ga, but thx 你~

回答 (2)

2007-09-16 12:20 am
✔ 最佳答案
The proposition S(n) of
‘1+3+5+...+(2n-1)=n^2,
is proved to be true for all positive integers n as follows:
when n=1
L.H.S.2(1) - 1 = 1
RHS=1^2 = 1
∴ L.H.S = R.H.S
∴S(1) is true.
Assume S(k) is true
i.e.,1 + 3 + 5 + ... + (2k - 1) = k^2
when n=k+1
L.H.S.
=1 + 3 + 5 + ... + (2k - 1) +(2k+1)
=k^2+(2k+1)
=(k+1)^2
=R.H.S.
∴ S (k + 1)is true
By the principle of Mathematical Induction, P (n) is true for all natural numbers n.
2007-09-16 12:24 am
你條式好似錯左wor...
當n=1時的確係成立
但係你試下代n=2...就唔成立喇
可能我唔識做啦....


收錄日期: 2021-04-20 22:19:24
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070915000051KK03090

檢視 Wayback Machine 備份