數學歸納法問題

2007-09-15 9:42 pm
p(n):1.4+2.7+3.10+.....+n( 3n+1)=n(n+1)^2
當n=1 左方=(1)(3(1)+1)

       =4
     右方=(1)(1+1)^2
=4
 
對於任何正整數k,假設p(k)成立
p(n):1.4+2.7+3.10+.....+k( 3k+1)=k(k+1)^2
考慮k+1項
之後果d唔知點做...
幫幫手

回答 (3)

2007-09-15 10:11 pm
✔ 最佳答案
when n=k+1
右方=(k+1)(k+2)^2............(*)
左方=1.4+2.7+3.10+.....+k(3k+1)+(k+1)(3k+4)............(**)
......=k(k+1)^2+(k+1)(3k+4)............(***)
......=(k+1)(k(k+1)+3k+4)
......=(k+1)(k^2+4k+4)
......=(k+1)(k+2)^2
P(k+1) is true if P(k) is true for any positive integer k
by principle of MI ,P(n) is true for all positive integers n

(*)在P(n)條式中右方代n=k+1
(**)在P(n)條式中左方代n=k+1時,由於佢只係加到n項,咁你就要幫佢加多個n+1項
記得要轉寫k,但尼步唔一定要寫,如果係明,可以直接寫下步
(***)因為你已經假設左P(k) is true,所以你就將P(k)個result代入去

2007-09-15 19:16:18 補充:
k(k 1)^2 (k 1)(3k 4)let k 1=xkx^2 x(3k 4)x(kx 3k 4)抽通項
2007-09-15 9:50 pm
當n = k+1,
左方=1.4+2.7+3.10+.....+k( 3k+1)+ (k+1)[3(k+1)+1]
=k(k+1)^2 + (k+1)(3k+4)
=(k+1)(k^2+k+3k+4)
=(k+1)(k^2+4k+4)
=(k+1)(k+2)^2
=(k+1)[(k+1)+1]^2

所以p(k+1)成立
參考: me
2007-09-15 9:50 pm
參考: My Maths knowledge


收錄日期: 2021-04-13 13:29:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070915000051KK02156

檢視 Wayback Machine 備份