✔ 最佳答案
1.)在一等差數列中,某三個連續項的和為30,及首項與第三項的比例為3:7。求此三項的值。
設該三項為 (x - d) , x , (x + d) ,
x - d + x + x + d = 30
3x = 30
x = 10 ----- (1)
(x - d)/(x + d) = 3/7
7(x - d) = 3(x + d)
7x - 7d = 3x + 3d
4x = 10d ------ (2)
(1) - (2) ,
4(10) = 10d
d = 4
∴第一項是(10 - 4 =6) , 第二項是 (10) , 第三項是 (10 + 4 = 14)
2.在一等差數列中,某三個連續項的和為24及此三項的積為312。求兩組代表此三項的值。
設該三項為 (x - d) , x , (x + d) ,
x - d + x + x + d = 24
3x = 24
x = 8 ----- (1)
x(x - d)(x + d) = 312
x(x^2-d^2) = 312
x^3 - xd^2 = 312 ----- (2)
(1) - (2),
8^3 - 8d^2 = 312
512 - 312 = 8d^2
d^2 = 200/8 = 25
d = ±5
當d = 5, 該三項為 (8 - 5 = 3) , 8 , (8 + 5 = 13) → 3 , 8 , 13
當d = -5, 該三項為 (8 - (-5) = 13) , 8 , (8 + (-5) = 3) → 13 , 8 , 3