✔ 最佳答案
Does the question ask you to prove the statement is correct?
I suppose that you question is "Prove for any positive integer n"
1. Let S(n) be the statement "3 + 3^2 + 3^3 + ... +3^n= 3/2 *(3^n -1)"
When n=1,
L.H.S.=3
R.H.S.=3/2 *(3 -1) =3
So, S(1) is true
Assume that S(k) is true, where k is any positive integer
i.e.3 + 3^2 + 3^3 + ... +3^k= 3/2 *(3^k -1)
when n=k+1
S(k+1)= 3 + 3^2 + 3^3 + ... +3^k +3^(k+1)
=3/2 *(3^k -1) +3^(k+1)
=3/2 * [3^k-1 +2/3 *3^(k+1)]
=3/2 * [3^k -1 +2 * 3^k]
=3/2 * [3 *3^k -1]
=3/2 * [3^(k+1) -1]
So, S(k+1) is true
By MI, S(n) is true for all positive integers n
2.Let S(n) be the statement "1^2+3^2+5^2+...+(2n-1)^2=(n(4(n^2)-1))/3"
When n=1,
L.H.S.=1^2=1
R.H.S.= [1(4 * 1 -1)]/3=1
S(1) is true
Assume that S(k) is true, where k is any positive integer
i.e.1^2+3^2+5^2+...+(2k-1)^2={k[4(k^2)-1]}/3
When n=k+1,
S(k+1)= 1^2+3^2+5^2+...+(2k-1)^2 +(2k +1)^2
={k[4(k^2)-1]}/3 + (2k+1)^2
={k[4(k^2)-1] +3 * (2k+1)^2}/3
={4k^3 -k +3(4k^2+ 4k+1)}/3
={4k^3+12k^2+11k+3}/3
={(k+1)(4k^2+8k+3)}/3
={(k+1)[4k^2+8k+4-1]}/3
={(k+1)[4(k+1)^2-1]}/3
So, S(k+1) is true
By MI, S(n) is true for all positive integers n
參考: A.Math. Knowledge