急!!!!指數定律

2007-09-07 6:47 am
1) 9(4^n)-3(2^(n+1))/5(2^(n-1)
要詳細steps

回答 (2)

2007-09-07 6:54 am
✔ 最佳答案
1)
9(4^n)-3(2^(n+1))/5(2^(n-1))
=9(2^2n) - 3(2^(n+1))/5(2^(n-1)) '.'(2^(n+1)/2^(n-1) = 4)
=9(2^2n) - 3*4/5
= 9(2^2n) -12 /5

2007-09-06 22:56:14 補充:
9(2^2n) -12 /5 = 18(2^n)-12/5 上面位仁兄答案錯左因為佢當左9(4^n)-3(2^(n 1))/5(2^(n-1)係 〔9(4^n)-3(2^(n 1))〕/5(2^(n-1)

2007-09-06 22:57:16 補充:
上面位仁兄其實9(4^n)-3(2^(n 1))/5(2^(n-1) 係 9(4^n) - 〔3(2^(n 1))/5(2^(n-1)〕
2007-09-07 6:51 am
9(4^n)-3(2^(n+1))/5(2^(n-1)
= 9(2^2n) - 3(2^n)(2) / 5(2^n)(2^(-1))
=9(2^n)(2^n)- 6(2^n) / (5/2)(2^n)
= 2^n(9.2^n - 6) / (5/2)(2^n)
=(9.2^n - 6) / (5/2)
=2(9.2^n - 6)/5
= (18.2^n - 12)/5
參考: me


收錄日期: 2021-04-13 13:21:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070906000051KK04642

檢視 Wayback Machine 備份