一條關於數學歸鈉法既問題(急)

2007-09-07 4:21 am
1x2x3+2x3x4+3x4x5+.....+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4

回答 (3)

2007-09-07 7:00 am
✔ 最佳答案
1x2x3+2x3x4+3x4x5+.....+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4

Let S be the statement

When n=1, LHS= 1(1+1)(1+2)
= 1x2x3
RHS= 1(1+1)(1+2)(1+3)/4
= 1x2x3x4/4
=1x2x3
therefore, S is true for n=1

Assume S is true for n=k, where k is an integer
i.e. 1x2x3+2x3x4+3x4x5+.....+k(k+1)(k+2)=k(k+1)(k+2)(k+3)/4

Add (k+1)(k+1+1)(k+1+2) to both sides

1x2x3+2x3x4+.....+k(k+1)(k+2)+ (k+1)(k+1+1)(k+1+2) =k(k+1)(k+2)(k+3)/4 + (k+1)(k+1+1)(k+1+2)
= k(k+1)(k+2)(k+3)/4 + (k+1)(k+2)(k+3)
= k(k+1)(k+2)(k+3)/4 +4(k+1)(k+2)(k+3)/4
= (k+1)(k+2)(k+3)(k +4)/4

therefore, if S is true for n=k, it is also true for n=k+1. By the principle of mathematical induction, S is true for all positive integers.
2010-07-09 1:32 am
5555555555555555555555555555555555555555555555555555
2007-09-07 10:07 am
alfred_miles兄的答案原全正確。


收錄日期: 2021-04-13 13:21:01
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070906000051KK03649

檢視 Wayback Machine 備份