解分式方程
1/(x-5) + 1/(x+2) = 1/(x-4) + 1/(x+1)
回答 (3)
(x-4+x+1)/((x-5)(x+2))=(x-5+x+2)/((x-4)(x+1))
(2x-3)/((x-5)(x+2))=(2x-3)/((x-4)(x+1))
(x-5)(x+2)=(x-4)(x+1)
x^2-3x-10=x^2-3x-1
x=3
參考: me
(x + 2 + x - 5)/((x-5)(x+2)) = (x+1 + x- 4)/((x-4)(x+1))
(2x -3)/((x-5)(x+2)) = (2x -3)/((x-4)(x+1))
(2x -3)((x-4)(x+1)) = (2x -3)((x-5)(x+2))
(2x - 3)((x-4)(x+1) - (x-5)(x+2)) = 0
(2x - 3)(6) = 0
x = 3/2
收錄日期: 2021-05-03 06:58:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070903000051KK01173
檢視 Wayback Machine 備份