✔ 最佳答案
秋天的起源=季節成因
Causes and effects
The seasons result from the Earth's axis being tilted to its orbital plane; it deviates by an angle of approximately 23.44 degrees. Thus, at any given time during summer or winter, one part of the planet is more directly exposed to the rays of the Sun (see Fig. 1). This exposure alternates as the Earth revolves in its orbit. At any given time, regardless of season, the northern and southern hemispheres experience opposite seasons (see Fig. 2 and Month ranges of seasons (below) and Effect of sun angle on climate).
Seasonal weather fluctuations also depend on factors such as proximity to oceans or other large bodies of water, currents in those oceans, El Niño/ENSO and other oceanic cycles, and prevailing winds.
In the temperate and polar regions, seasons are marked by changes in the amount of sunlight, which in turn often causes cycles of dormancy in plants and hibernation in animals. These effects vary with latitude, and with proximity to bodies of water. For example, the South Pole is in the middle of the continent of Antarctica, and therefore a considerable distance from the moderating influence of the southern oceans. The North Pole is in the Arctic Ocean, and thus its temperature extremes are buffered by the presence of all that water. The result is that the South Pole is consistently colder during the southern winter than the North Pole during the northern winter.
The cycle of seasons in the polar and temperate zones of one hemisphere is opposite to that in the other. When it is summer in the Northern hemisphere, it is winter in the Southern hemisphere, and vice versa, and when it is spring in the Northern hemisphere it is autumn in the Southern hemisphere, and vice versa.
In the tropics, there is no noticeable change in the amount of sunlight. However, many regions (famously the northern Indian Ocean) are subject to monsoon rain and wind cycles. Curiously, a study of temperature records over the past 300 years (David Thomson, Science, April 1995) shows that the climatic seasons, and thus the seasonal year, are governed by the anomalistic year rather than the tropical year.
In meteorological terms, the winter solstice and summer solstice (or the date maximum/minimum insolation) do not fall in the middle of winter and summer respectively. The heights of these seasons occur up to a month later due to seasonal lag. Seasons though, are not always defined in meteorological terms; see reckoning
Compared to axial tilt, other factors contribute little to seasonal temperature changes. It's a common misconception that the seasons are the result of the variation in Earth’s distance to the sun due to its elliptical orbit.[1] Orbital eccentricity can influence temperatures, but on Earth, this effect is small and is more than counteracted by other factors; research shows that the Earth as a whole is actually a few degrees warmer when farther from the sun.[2] Mars however experiences wide temperature variations and violent dust storms every year at perihelion.[3] The sun, in its seasonal movement through the sky, passes directly over the equator each year on march and September.