坐標幾何問題

2007-08-30 12:15 am
1在以列各題中,P(x,y)按指定的比內分線段AB,求其坐標。
(a)A(1,2),B(-2,8):1:2
(b)A(-3,-4),B(2,6):2:3
2一直線有如下的斜率,求平行於該直線的斜率。
(a)四
(b)三分之一
3一直線有如下的斜率,求垂直於該直線的直線的斜率。
(a) 1.5  (b) -3
4己知三點X(-2,2)、O(1,y)、Y(4,10)。若OX = OY,求y的可能值。
5線段ST與y軸相交於Q,其中S和T的坐標1分別為(-4,1)和(2,3)。求Q的坐標。

回答 (1)

2007-08-30 12:40 am
✔ 最佳答案
1.(a) x = [1(2) + (-2)(1)]/3 = 0, y= [2(2) + (8)(1)]/3 = 4, hence, (x,y)=(0,4)
(b) x= [(-3)(3) + (2)(2)]/5 = -1, y=[(-4)(3) + (6)(2)]/5 = 0, hence, (x,y) = (-1,0)

2. (a)四
(b)三分之一

3. (a) slope = -1/1.5 = -2/3
(b) slope = -1/-3 = 1/3

4. (y-2)^2 + [1-(-2)]^2 = (10-y)^2 + (4-1)^2
y^2 -4y+4 + 9 = 100-20y+y^2 + 9
16y=96
y= 6

5. Equation of line ST:
(y-1)/[x-(-4)] = (3-1)/[2-(-4)]
(y-1)/(x+4) = 2/6
3y-3=x+4
Put x=0 into it,
3y-3=4
3y=7
y=2 1/3

Hence, Q is (0, 2 1/3)

2007-08-30 14:31:57 補充:
Question (1): if a line is divided into 2 segments in ratio a:b with 2 points: (c,d) & (e,f), then the dividing point, x=(bc+ae)/(a+b), y=(bd+af)/(a+b)Question (2), all 平行線的斜率 ar equalQuestion (3), 垂直直線的斜率 * 垂直於該直線的斜率 = -1Question (4) X^2 + Y^2 = Z^2Question (5)ST與y軸相交, hence, x=0


收錄日期: 2021-04-13 13:10:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070829000051KK03460

檢視 Wayback Machine 備份