✔ 最佳答案
(1) 簡單來說,每一個complex number 都可以用Argand Diagram 上的一點代表,這是定義, ,就像座標一樣,你會比較座標上兩點的大小嗎?
(2) If Arg x = Arg y+ 2nπ, 從Argand Diagram 上來說, 它們是在同一位置的,而且x是y的某一個倍數, 例如 x=3+4i, y=9+12i, 得出來的argument 會一樣, y=3x, 所以其實x=ky for any non negative real k.
| x + y |=| ky + y |=(k+1)|y|
| x | + | y | = | ky | + | y |= (k+1)|y|= | x + y |
If | x + y | = | x | + | y | , then squaring both side (x bar is x conjugate)
因為 xxbar=| x |^2, so
| x + y |^2 = (| x | + | y |)^2
(x+y)(x+y)bar= | x |^2+| y |^2+2| x || y |
(x+y)(x+y)bar= | x |^2+| y |^2+xybar+yxbar = | x |^2+| y |^2+2| x || y |
because xybar+yxbar= xybar+bar(xybar) =2 Re(xybar)= 2| x || y |
so Re(xybar)= | x || y |= | x || y bar| = | xybar| (因為| y |= | y bar |)
一個複數的modulus會等於real part, 除非Imaginary part=0, 所以 xybar is a real number
A real number has a argument of 0
so Arg(xybar)=0
but Arg(xybar)= Arg(x)-Arg(y)+2kπ=0
所以 Arg(x) = Arg(y)-2kπ = Arg(y)+2nπ where n=-k of some integer
2007-08-26 02:55:37 補充:
應該話係 A real number has a argument of kπ where k is a integer