✔ 最佳答案
Solve (x² + 2x + 1)/(x² + 5x + 4) + (x – 1)/(x² – 3x – 4) = 0.
(x² + 2x + 1)/(x² + 5x + 4) + (x – 1)/(x² – 3x – 4) = 0
(x + 1)²/((x + 4)(x + 1)) + (x – 1)/((x – 4)(x + 1)) = 0
((x + 1)²(x – 4) + (x – 1)(x + 4))/((x + 4)(x – 4)(x + 1)) = 0
(x + 1)²(x – 4) + (x – 1)(x + 4) = 0
(x² + 2x + 1)(x – 4) + x² + 3x – 4 = 0
x³ + 2x² + x – 4x² – 8x – 4 + x² + 3x – 4 = 0
x³ – x² – 4x – 8 = 0
Let f(x) = x³ – x² – 4x – 8
f(1) = 1³ – 1² – 4 × 1 – 8 = – 12 ≠ 0
∴x – 1 is not a factor.
f(– 1) = (– 1)³ – (– 1)² – 4(– 1) – 8 = – 6 ≠ 0
∴x + 1 is not a factor.
f(2) = 2³ – 2² – 4 × 2 – 8 = – 12 ≠ 0
∴x – 2 is not a factor.
f(– 2) = (– 2)³ – (– 2)² – 4(– 2) – 8 = – 12 ≠ 0
∴x + 2 is not a factor.
f(4) = 4³ – 4² – 4 × 4 – 8 = 24 ≠ 0
∴x – 4 is not a factor.
f(– 4) = (– 4)³ – (– 4)² – 4(– 4) – 8 = – 72 ≠ 0
∴x + 4 is not a factor.
f(8) = 8³ – 8² – 4 × 8 – 8 = 408 ≠ 0
∴x – 8 is not a factor.
f(– 8) = (– 8)³ – (– 8)² – 4(– 8) – 8 = – 552 ≠ 0
∴x + 8 is not a factor.
今次你真係唔想喊救命都唔得啦!因為x³ – x² – 4x – 8冇得factorize!
不過,唔洗驚!呢條equation唔係solve唔倒,只不過要用到三次公式(
http://zh.wikipedia.org/wiki/%E4%B8%89%E6%AC%A1%E6%96%B9%E7%A8%8B)之嘛!
Let x = y – h,
Then (y – h)³ – (y – h)² – 4(y – h) – 8 = 0
The term in y² will vanish if – 3h – 1 = 0
Choosing h = – 1/3, the equation becomes
(y + 1/3)³ – (y + 1/3)² – 4(y + 1/3) – 8 = 0
y³ + (3/3)y² + (3/9)y + 1/27 – (y² + (2/3)y + 1/9) – 4y – 4/3 – 8 = 0
y³ + y² + (1/3)y + 1/27 – y² – (2/3)y – 1/9 – 4y – 4/3 – 8 = 0
y³ – (13/3)y – 254/27 = 0, which is a cubic equation which is the depressed cubic.
Let y = u + v,
Then u³ + v³ = 254/27 and uv = 13/9
Hence u³ + (13/(9u))³ = 254/27
u³ + 2197/(729u³) = 254/27
729u^6 + 2197 = 6858u³
729u^6 – 6858u³ + 2197 = 0
u³ = [– (– 6858) ± √((– 6858)² – 4(729)(2197))]/(2 × 729)
u = ³√((6858 ± √40625712)/1458)
= ³√((6858 ± 972√43)/1458)
= ³√((127 ± 18√43)/27)
= (³√(127 ± 18√43))/3
When u = (³√(127 + 18√43))/3,
v = 13/[9[(³√(127 + 18√43))/3]]
= 13/[3(³√(127 + 18√43))]
= ³√[2197/(27(127 + 18√43))]
= ³√[(2197(127 – 18√43))/(27(127 + 18√43)(127 – 18√43))]
= ³√[(2197(127 – 18√43))/(27(2197))
= (³√(127 – 18√43))/3
When u = (³√(127 – 18√43))/3,
v = 13/[9[(³√(127 – 18√43))/3]]
= 13/[3(³√(127 – 18√43))]
= ³√[2197/(27(127 – 18√43))]
= ³√[(2197(127 + 18√43))/(27(127 – 18√43)(127 + 18√43))]
= ³√[(2197(127 + 18√43))/(27(2197))
= (³√(127 + 18√43))/3
由此可見,u和v是共軛,所以我哋只需選擇其中一組u, v的解即可。
Hence y = u + v or ωu + ω²v or ω²u + ωv,
where ω = e^(2iπ/3) = cos (2π/3) + i sin (2π/3) = – 1/2 + ((√3)/2)i
∴y = (³√(127 + 18√43))/3 + (³√(127 – 18√43))/3 or (– 1/2 + ((√3)/2)i)((³√(127 + 18√43))/3) + (– 1/2 + ((√3)/2)i)²((³√(127 – 18√43))/3) or (– 1/2 + ((√3)/2)i)²((³√(127 + 18√43))/3) + (– 1/2 + ((√3)/2)i)((³√(127 – 18√43))/3)
= (³√(127 + 18√43) + ³√(127 – 18√43))/3 or (– 1/2 + ((√3)/2)i)((³√(127 + 18√43))/3) + (1/4 + ((√3)/2)i – 3/4)((³√(127 – 18√43))/3) or (1/4 + ((√3)/2)i – 3/4)((³√(127 + 18√43))/3) + (– 1/2 + ((√3)/2)i)((³√(127 – 18√43))/3)
= (³√(127 + 18√43) + ³√(127 – 18√43))/3 or (– 1/2 + ((√3)/2)i)((³√(127 + 18√43))/3) + (– 1/2 – ((√3)/2)i)((³√(127 – 18√43))/3) or (– 1/2 – ((√3)/2)i)((³√(127 + 18√43))/3) + (– 1/2 + ((√3)/2)i)((³√(127 – 18√43))/3)
= (³√(127 + 18√43) + ³√(127 – 18√43))/3 or [[(√3) ³√(127 + 18√43) – (√3) ³√(127 – 18√43)]i – ³√(127 + 18√43) – ³√(127 – 18√43)]/6 or [[(√3) ³√(127 – 18√43) – (√3) ³√(127 + 18√43)]i – ³√(127 + 18√43) – ³√(127 – 18√43)]/6
Hence x = y + 1/3
= (1 + ³√(127 + 18√43) + ³√(127 – 18√43))/3 or [(³√(381√3 + 54√129) – ³√(381√3 – 54√129))i + 2 – ³√(127 + 18√43) – ³√(127 – 18√43)]/6 or [(³√(381√3 – 54√129) – ³√(381√3 + 54√129))i + 2 – ³√(127 + 18√43) – ³√(127 – 18√43)]/6
注意:最後果兩個complex root千祈唔可以reject!因為complex root is also a kind of root!
2007-08-31 20:31:46 補充:
話時話,cheese_cake_leong,究竟你本書嘅果條題目印錯咗啲咩嘢?
不過有一個咁難得嘅機會俾我練三次公式,真係非常多謝你!