✔ 最佳答案
a)
Let angle OAC be a
AC² + AO² - 2(AO)(AC)(cos a) = OC²
6² + 3² - 2(6)(3)(cos a) = 4²
-2(6)(3)(cos a) = -29
cos a = (-29) / (-36)
a = 36.336°
b)
i)
tan40° = BC / OC
BC = 4(tan40°)
tan30° = BC / CD
CD = 4(tan40°) / tan30°
CD = 5.813m
ii)
Let angle CAD be A
AC² + AD² - 2(AC)(AD)(cos A) = CD²
6² + 8² - 2(6)(8)(cos A) = 5.813²
A = 46.395°
iii)
from above a) and bii)
Angle EAD = Angle CAD – Angle OAC
= A - a
= 46.395° - 36.336°
= 10.059°
Angle AED = 180° - θ
ED / sin(A-a) = 8 / sin(180° - θ)
(note: sin(180° - θ) = sinθ)
ED = 8(sin10.059°) / sinθ
CE / (sin a) = 6 / sinθ
CE = 6(sin36.336°) / sinθ
CD = CE + ED
CD = [6(sin36.336°) / sinθ] + [8(sin10.059°) / sinθ]
5.813 = [6(sin36.336°) + 8(sin10.059°)] / sinθ
sinθ = [6(sin36.336°) + 8(sin10.059°)] / 5.813
θ = 58.425°