多邊形(數學)

2007-08-16 5:15 am
可否幫我解答問題!!
第2同埋第3題!!
http://img217.imageshack.us/img217/7049/77020874fc8.jpg

回答 (2)

2007-08-16 5:33 am
✔ 最佳答案
2)
In △ABC
∵AB=AC (given)
∴∠ABC=∠ACB (base.∠s, isos.△)
∠ACB=(180°-50°)/2=65°
In△ACD
50°+∠ADC+∠ACD=180° (∠ sum of △)
50°+(180°-90°)+∠ACD=180°
∠ACD=40°
∴∠BCD=∠ACB-∠ACD
∠BCD=65°-40°=25°

3)
Each of the interior ∠ in the polygon=[(n-2)x180°]/6 , where n is the number of size
∠AFE=120°
In △ABF
∵AF=AB (given)
∴∠AFB=∠ABF (base.∠s, isos.△)
∠AFB=(180°-120°)/2=30°
In △DEF
∵DE=EF (given)
∴∠EFD=∠EDF (base.∠s, isos.△)
∠EFD=(180°-120°)/2=30°
∴x+∠EFD+∠AFB=∠AFE
x+30°+30°=120°
x=60°

2007-08-15 21:35:11 補充:
= =如果你覺得碩士先生的答案較佳,請先知會我一聲,我會自行刪除我的答案,拜託。
2007-08-16 5:29 am
( 2 ) ∠ DAC + ∠ ACD = 90* ( ext. ∠ of triangle )

50* + ∠ ACD = 90*

∠ ACD = 40*

∠ ABC = ∠ ACB ( base ∠s, isos. triangle )

2 ∠ ACB + 50* = 180* ( ∠ sum of triangle )

∠ ACB = 65*

∠ BCD = 65* - 40* = 25*

( 3 ) For a regular polygon, all sides are equal.

The size of each interior angle :

( 6 - 2 ) x 180* / 6

= 120*

By SAS, triangles FED and ABF are concurrent.

∠ AFB = ∠ ABF ( base ∠s, isos. triangle )

120* + 2 ∠ AFB = 180* ( ∠ sum of triangle )

∠ AFB = 30*

Then ∠ EFD = 30* ( corr. ∠s, concurrent triangles )

x + 30* + 30* = 120*

x = 60*
參考: My Maths Knowledge


收錄日期: 2021-04-27 13:36:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070815000051KK05819

檢視 Wayback Machine 備份