✔ 最佳答案
(A)導體=Conductor=可以使電流導通的物體或材料,通常是金屬
(B)半導體=Semiconductor=只在有單方向可以使電流導通的物體或材料,如電子學
中之二極體 , 因它有PN junction。
介於導體與非導體間之物質(如矽或鍺),故其導電性居於金屬與絕緣體之間,並隨溫度而增加。半導體材料,呈中度至高度之電阻性(視製造之際所摻雜之物質而定)。純半導體材料( 稱為內質半導體),導電性低;若於其中添加特定類型之雜質原子(成為外質半導體),則可大為增加其導電性。施體雜質(5價)可大量增加電子數目,而產生負型半導體;受體雜質(3價)則大量增加電洞數目,而產生正型半導體。此種外質半導體之導電性,端視其中雜質之類型及總量而定。不同導電性之半導體若經集合一起,可形成各種接面; 此即為半導體裝置(供作電子組件使用)之基礎。半導體一詞,亦常意指此類裝置本身(如電晶體、積體電路等)。
------------------------------------------------------------
以導電性來說,應該知道有所謂的導體和絕緣體;而介於兩者之間,導電性比金屬導體小很多,卻比絕緣體來得好的物質,就叫做『半導體』或『半金屬』。
一般而言,矽(Si)是最常用的半導體材料,在矽中摻入微量的砷(As)、磷(P)或硼(B),就能改變矽的導電特性,形成n型(負性)或p型(正性)半導體。n型?p型?是什麼意思呢?下面簡單說明:
矽原子的最外層有四個電子,純矽原子間以共價(共用電子)的方式,形成一相當穩定的狀態。由於缺少自由電子,因此,純矽的導電性極差。
但是,如果我們在純矽中摻入(doping)少許的砷或磷(最外層有五個電子),就會多出一個自由電子,這樣就形成n型半導體;如果我們在純矽中摻入少許的硼(最外層有三個電子),就反而少了一個電子,而形成一個電洞,這樣就形成p型半導體(少了一個帶負電荷的電子,可視為多了一個正電荷)。此時若在矽晶兩端加電壓,就能使電子產生自由移動而顯著地增加其導電性。
除了n型和p型半導體,如果把兩者連接起來,在它們的接合面會有特殊情形產生,我們把這個面稱為p-n型接面(p-n junction)。一般熟知的電晶體、二極體等電子元件,就是利用p-n型接面而形成的。
半導體的重要性,在於我們可以利用改變半導體的電容,製成各種半導體元件,而使得電子工業、光學工業和能量系統都產生重大改進(如雷射、太陽能電池),近年來更廣泛運用在電腦的晶片中。
半導體<semicondcctor>,顧名思義,是導電力介於金屬等導體和玻璃等飛導電體的物質.若以導電率來看,半導體大致位於1e3-10(ohm-cm)間<這只是概分>.是溫下鋁的電阻係數為2.5e-6 ohm-cm,而玻璃則幾乎無限大.會有這種現象是因為物質內部電子分布在不同的能量範圍<或稱能帶>內,其中可讓電子自由移動的能帶稱為導電帶,除非導帶內有電子可自由活動,否則物質將無法經由電子來傳導電流.其他能帶<導電帶>的電子必須要克服能量障礙<指能隙>躍升致電導電帶後,方可成為導電電子.例如玻璃,即是因為這能隙太大,使得電子再是溫下無法躍至導電帶後自由活動,所以是非導體.
至於半導體,其能量障礙不是很大,低於非導體,所以在高溫,照光等給予能量的狀況或是地加入一些可減小能量障礙的元素,便可以改變其電阻值,成為電的良導體.電子工業是利用半導體這種可隨環境,參質的加入等而改變其導電能力的特性,發展出多項的應用產品.
半導體的材料又可分為元素半導體及化合物半導體.元素半導體是由一元素所組成的半導體,如Si,Ge等;化合物半導體則是兩種以上的元素所組成的半導體,如GaAs,Zns等,常運用於光電或高速元件中.
半導體的原理:
1. 導電性介於導體和半導體之間的物體,稱為半導體 2. 此物體需要高溫和高電量才能通電的物體. 3.在溫度是0和電導率是0,當溫度上升後,價能帶內的電子,由於熱激發躍進到導帶,致使導帶內充滿一些電子,導電率隨之增加----------這就是半導體.
#半導體的特性:
1. 溫度上升電阻下降的特性
2. 整流效應
3 光伏特效應
4. 光電導效應