✔ 最佳答案
1.你係咪漏左第一項 1x2 ?
1x2 + 2x3 + 3x4 +..... +Nx(N+1)
=1(1 + 1) + 2(2+1) +3(3+1) + 4(4+1) + ... + N(N +1)
=1^2 + 2^2 + 3^2 + 4^2 + ... + N^2 + (1 + 2 + 3 + 4 + ... + N)
= N(N+1)(2N+1)/6 + N(N+1)/2
= N(N+1) x [(2N + 1)/6 + 1/2]
= N(N+1) x (2N + 1 + 3)/6
= N(N+1)(2N+4)/6
= N(N+1) x [ 2(N+2)/6]
= 1/3 x N(N+1)(N+2)
2. 同樣漏了第一項 1x2x3.
首先: Nx(N+1)x(N+2) = N^3 + 3N^2 +2N
所以: 1x2x3 + 2x3x4 + 3x4x5 +... + Nx(N+1)x(N+2)
= (1^3 + 2^3 + 3^3 + ... + N^3) + 3(1^2 + 2^2 + 3^2 + ... +N^2)
+ 2(1 + 2 + 3 + ... + N)
= N^2(N+1)^2 / 4 + 3 [ N(N+1)(2N+1)/6 ] + 2[ N(N+1)/2 ]
= N^2(N+1)^2 / 4 + N(N+1)(2N+1)/2 + N(N+1)
= N(N+1) [ N(N+1) / 4 + (2N+1)/2 + 1 ]
= N(N+1) [ (N^2 + N + 4N + 2 + 4) / 4 ]
= 1/4 x N(N+1) (N^2 + 5N + 6)
= 1/4 x N(N+1)(N+2)(N+3)
2007-08-06 16:43:50 補充:
呢d 公式全部係由以下三條基本公式而來:一: 1 + 2 + 3 + ... + n = n(n+1)/2二: 1^2 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6三: 1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2 = [n(n+1)/2]^2 = n^2(n+1)^2/4方法係將原本的數列改為由以上三組數列表示。一你都知點prove 啦! 三角形數二、三點prove 我都唔知