Mathematical Problem

2007-08-02 7:45 pm
矩形ABCD中,AB=6,AD=6,將矩形ABCD在直線l上按順時針方向不滑動地每秒轉90*,轉動3秒後,頂點A經過的路線長是?

D____________C



A____________B

AD,BC are linked.

回答 (3)

2007-08-04 2:26 am
✔ 最佳答案
在第1秒,A 的路線等於以AB 為半徑來畫的圓周的1/4,
即: 2 x 6 x 丌 x 1/4 = 3丌

第2秒,A 的路線等於以AC 為半徑來畫的圓周的1/4,
即: 2 x sqrt(6^2 + 6^2) x 丌 x 1/4 = 3sqrt(2) 丌

第3秒,A 的路線等於以AD 為半徑來畫的圓周的1/4,
即: 2 x 6 x 丌 x 1/4 = 3丌

所以A 經過的路線長
= 3丌 + 3sqrt(2) 丌 + 3丌
=[ 6 + 3sqrt(2) ] 丌
= 32.2 (取值至三位有效數字)
2007-08-03 4:21 am
Ans = (2*pr*6)/4+(2*pr*(sq root of(6<sup>2</sup>+6<sup>2</sup>))/4+(2*pr*6)/4

2007-08-02 20:29:11 補充:
Ans = 3*pr + 4.24*pr + 3*pr = 10.24*pr = 32.1536
2007-08-02 8:30 pm
If you rotate it for a cycle, you will see its path is a circle.

A period need 4s, so in 3s, A has moved for 270 degree or 3/4 circle

Distance = 3/4 of the circle = 3/4 (2r pi)

r=(6^2+6^2)^0.5=6(2)^0.5. pi=3.14159

Distance= 3/2 r pi =39.99 cm

Displacement = 6 cm (A now is at B)


收錄日期: 2021-04-13 00:55:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070802000051KK01421

檢視 Wayback Machine 備份