等比與等比數列問題

2007-07-27 10:33 pm
1.已知數列的通項為T(n)。求數列的首四項
(a) T(n) = 3n^2 +2
(b) T(n) = 3n + 1

咩係首四項??

2. 推斷下列數列的通項 T(n)。
(a) 1.2,2.3,3.4,4.5, ...
(b) a,a^2,a^3,a^4, ...

點推斷??

3. 求下列已知通項T(n)的數列的首三項。
(i) T(n) = (-1)^n
(ii) T(n) = (-1)^n+1

以上兩個數列之間的規律有何分別?

請詳細小小 , 因為我完全唔明 ...

回答 (2)

2007-07-27 10:53 pm
✔ 最佳答案
1.
T(1) = 第一項
T(2) = 第二項
...
T(n) = 第 n 項

首四項即是 T(1), T(2), T(3), T(4)
(a) 5, 14, 29, 50
(b) 4, 7, 10, 13

2.
要推斷通項, 其中一個方法是觀察. 觀察會變的數字, 找出它和項數 n 的關係.

(a) 1.2, 2.3, 3.4, 4.5, ...
=>1.(1+1), 2.(2+1), 3.(3+1), 4.(4+1), ...
=> T(n) = n.(n+1)

(b) a,a^2,a^3,a^4, ...
=>a^1,a^2,a^3,a^4, ...
明顯地每項都有a, 所以 T(n)同樣有a.
T(n) = a^n

3.
首三項
(i) -1, 1, -1
(ii) 1, -1, 1

兩個數列之間的規律分別 有兩種表達方法.
一, (ii) 是 (i) 的每項乘 -1.
二, (ii) 是 (i) 的項數向左或向右移的結果.
2007-07-27 10:55 pm
n為代數, 由1起代入n中後運算

1a) T(n) = 3n^2 +2
T(1) = 3(1)^2 + 2 = 3(1) + 2 = 5
T(2) = 3(2)^2 + 2 = 3(4) + 2 = 14
T(3) = 3(3)^2 + 2 = 3(9) + 2 = 29
T(4) = 3(4)^2 + 2 = 3(16) + 2 = 50

1b) T(n) = 3n + 1
T(1) = 3(1) + 1 = 4
T(2) = 3(2) + 1 = 7
T(3) = 3(3) + 1 = 10
T(4) = 3(4) + 1 = 13

2a) 1.2,2.3,3.4,4.5, ...
T(n) = n(n+1)

2b) a,a^2,a^3,a^4, ...
T(n) = a^(n)


3i) T(n) = (-1)^n
T(1) = (-1)^1 = -1
T(2) = (-1)^2 = 1
T(3) = (-1)^3 = -1

3ii) T(n) = (-1)^n+1
T(1) = (-1)^1 + 1 = -1 + 1 = 0
T(2) = (-1)^2 + 1 = 1 + 1 = 2
T(3) = (-1)^3 + 1 = -1 + 1 = 0

or
3ii) T(n) = (-1)^(n+1)
T(1) = (-1)^(1 + 1) = -1^2 = 1
T(2) = (-1)^(2 + 1) = -1^3 = -1
T(3) = (-1)^(3 + 1) = -1^4 = 1


收錄日期: 2021-04-13 14:02:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070727000051KK02621

檢視 Wayback Machine 備份