✔ 最佳答案
沒錯,obviously, 3a^4 + 8a³b - 12a²b² - 112ab³ - 158b^4 = 0 has solution
╭
_│a = 0
│b = 0
╰
但這條數學題還未就此完結。第一,此方程式有無限多個解。第二,上述的解不符合「一對‘正’整數解」的要求。
所以要繼續做埋落去!
3a^4 + 8a³b – 12a²b² – 112ab³ – 158b^4 = 0
Suppose a, b ≠ 0,
3((a^4)/(b^4)) + 8(a³/b³) – 12(a²/b²) – 112(a/b) – 158 = 0
3(a/b)^4 + 8(a/b)³ – 12(a/b)² – 112(a/b) – 158 = 0
Let x = a/b, the equation becomes:
3x^4 + 8x³ – 12x² – 112x – 158 = 0
Let f(x) = 3x^4 + 8x³ – 12x² – 112x – 158
Note that 3 has factors ± 1 and ± 3; 158 has factors ± 1, ± 2, ± 79 and ± 158
f(1) = 3 × 1^4 + 8 × 1³ – 12 × 1² – 112 × 1 – 158 = – 271 ≠ 0
∴x – 1 is not a factor.
f(– 1) = 3(– 1)^4 + 8(– 1)³ – 12(– 1)² – 112(– 1) – 158 = – 63 ≠ 0
∴x + 1 is not a factor.
f(2) = 3 × 2^4 + 8 × 2³ – 12 × 2² – 112 × 2 – 158 = – 318 ≠ 0
∴x – 2 is not a factor.
f(– 2) = 3(– 2)^4 + 8(– 2)³ – 12(– 2)² – 112(– 2) – 158 = 2 ≠ 0
∴x + 2 is not a factor.
f(79) = 3 × 79^4 + 8 × 79³ – 12 × 79² – 112 × 79 – 158 = 120710657 ≠ 0
∴x – 79 is not a factor.
f(– 79) = 3(– 79)^4 + 8(– 79)³ – 12(– 79)² – 112(– 79) – 158 = 112839729 ≠ 0
∴x + 79 is not a factor.
f(158) = 3 × 158^4 + 8 × 158³ – 12 × 158² – 112 × 158 – 158 = 1900840962 ≠ 0
∴x – 158 is not a factor.
f(– 158) = 3(– 158)^4 + 8(– 158)³ – 12(– 158)² – 112(– 158) – 158 = 1837767362 ≠ 0
∴x + 158 is not a factor.
f(1/3) = 3(1/3)^4 + 8(1/3)³ – 12(1/3)² – 112(1/3) – 158 = – 589/3 ≠ 0
∴3x – 1 is not a factor.
f(– 1/3) = 3(– 1/3)^4 + 8(– 1/3)³ – 12(– 1/3)² – 112(– 1/3) – 158 = – 3301/27 ≠ 0
∴3x + 1 is not a factor.
f(2/3) = 3(2/3)^4 + 8(2/3)³ – 12(2/3)² – 112(2/3) – 158 = – 6346/27 ≠ 0
∴3x – 2 is not a factor.
f(– 2/3) = 3(– 2/3)^4 + 8(– 2/3)³ – 12(– 2/3)² – 112(– 2/3) – 158 = – 814/9 ≠ 0
∴3x + 2 is not a factor.
f(79/3) = 3(79/3)^4 + 8(79/3)³ – 12(79/3)² – 112(79/3) – 158 = 14195273/9 ≠ 0
∴3x – 79 is not a factor.
f(– 79/3) = 3(– 79/3)^4 + 8(– 79/3)³ – 12(– 79/3)² – 112(– 79/3) – 158 = 34856459/27 ≠ 0
∴3x + 79 is not a factor.
f(158/3) = 3(158/3)^4 + 8(158/3)³ – 12(158/3)² – 112(158/3) – 158 = 653693558/27 ≠ 0
∴3x – 158 is not a factor.
f(– 158/3) = 3(– 158/3)^4 + 8(– 158/3)³ – 12(– 158/3)² – 112(– 158/3) – 158 = 196967698/9 ≠ 0
∴3x + 158 is not a factor.
Hence there are not any rational roots of x, only have irrational roots or/and complex roots of x
i.e. a/b = x_i for i = 1, 2, 3, 4 at which represent the four roots of the equation 3x^4 + 8x³ – 12x² – 112x – 158 = 0
Then a = (x_i)b and b = a/(x_i)
If b is a positive integer, then a should not a positive integer.
If a is a positive integer, then b should not a positive integer.
∴a和b不能同時是正整數
因此,我們不可能找到一對‘正’整數a和b使其滿足方程3a^4 + 8a³b – 12a²b² – 112ab³ – 158b^4 = 0。
注意:雖然我們不可以找到一對‘正’整數a和b使其滿足方程3a^4 + 8a³b – 12a²b² – 112ab³ – 158b^4 = 0,但不代表此方程式完全冇解。實際上,此方程式不但有解,而且有無限多組解,只不過在同一組解不會同時出現兩個正整數而已。
To find the general solution of 3a^4 + 8a³b – 12a²b² – 112ab³ – 158b^4 = 0, we first solve 3x^4 + 8x³ – 12x² – 112x – 158 = 0, i.e. find x_1, x_2, x_3 and x_4. But this process must involve Quartic formula which is shown at
http://hk.knowledge.yahoo.com/question/?qid=7007030702434,
After finding x_1, x_2, x_3 and x_4, we will quickly know that a = (x_1)b or a = (x_2)b or a = (x_3)b or a = (x_4)b. At this time, we let b = t, for all t in C.答案呼之欲出。
The general solution is
╭
_│a = (x_1)t
│b = t
╰
or
╭
_│a = (x_2)t
│b = t
╰
or
╭
_│a = (x_3)t
│b = t
╰
or
╭
_│a = (x_4)t
│b = t
╰
, for all t in C
2007-08-05 02:38:14 補充:
感冒唔駛食藥,飲盒仔茶就得啦。 同埋 貓朋 ,請你哋唔好用gcd、mod嚟撻人啦!!!唔好將條數搞到咁複雜啦!好似我咁計已經冇問題啦!