simple a maths inequalites

2007-07-27 12:18 am
find the range of k for which kx^2-2x+k>0 for all real values of x.

回答 (2)

2007-07-27 12:26 am
✔ 最佳答案
From the given condition, △ < 0

( - 2 )^2 - 4 ( k )( k ) < 0

4 - 4k^2 < 0

4 < 4k^2

k^2 > 1

k^2 - 1 > 0

( k + 1 )( k - 1 ) > 0

k < - 1 or k > 1


2007-07-26 16:27:24 補充:
Sorry, something more, as k &gt; 0 , so it should be k &gt; 1

2007-07-26 16:38:17 補充:
k should be &gt; 0 as the curve opens upwards. kx^2-2x+k &gt; 0 for all real values of x means the curve does not interest / touch the x-axis for all real values of x. So it means kx^2 - 2x + k = 0 has no real solutions and hence delta &lt; 0
參考: My Maths Knowledge
2007-07-27 12:27 am
kx^2 - 2x + k &gt; 0
(-2)^2 - 4(k)(k) &lt; 0
4 - 4k^2 &lt; 0
1 - k^2 &lt; 0
(1 + k) (1 - k) &lt; 0
-1 &lt; k &lt; 1
參考: Me


收錄日期: 2021-04-13 17:55:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070726000051KK03091

檢視 Wayback Machine 備份