maths
1.rewrite the equation 3tanθ=2cosθ in the form asin²θ+bsinθ+c=0,where a,b and c are integers.Hence solve the equation for 0°<θ<360°
2.Slove sin²θ-3cosθ-1=0 for 0°<θ<360°.
3.(a)Find x if sinx =1/2 and 90°<180°.
(b)Simplify 1-sin²A / cosA
回答 (3)
1.3tanθ=2cosθ
3(sinθ/cosθ)=2cosθ
3sinθ=2cos^2θ
3sinθ=2-2sin^2θ
2sin^2θ+3sinθ-2=0
(2sinθ-1)(sinθ+2)=0
sinθ=1/2 OR sinθ= -2(rejected)
θ= 30° OR 150°
2.sin²θ-3cosθ-1=0
1-cos^2θ-3cosθ-1=0
cosθ(cosθ+3)=0
cosθ=0 OR cosθ= -3(rejected)
θ= 90° OR 270°
3A)sinx =1/2
x= 150°
B)1-sin²A / cosA =cos^2A/cosA=cosA
1.3tanθ=2cosθ
3(sinθ/cosθ)=2cosθ
3sinθ=2cos^2θ
3sinθ=2-2sin^2θ
2sin^2θ+3sinθ-2=0
(2sinθ-1)(sinθ+2)=0
sinθ=1/2 OR sinθ= -2(rejected)
θ= 30° OR 150°
2.sin²θ-3cosθ-1=0
1-cos^2θ-3cosθ-1=0
cosθ(cosθ+3)=0
cosθ=0 OR cosθ= -3(rejected)
θ= 90° OR 270°
3A)sinx =1/2
x= 150°
B)1-sin²A / cosA =cos^2A/cosA=cosA
參考: ME
收錄日期: 2021-04-23 22:21:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070724000051KK01152
檢視 Wayback Machine 備份