✔ 最佳答案
1.
(x – y)(x^4 + x³y + x²y² + xy³ + y^4)
= x(x^4 + x³y + x²y² + xy³ + y^4) – y(x^4 + x³y + x²y² + xy³ + y^4)
= x^5 + x^4 y + x³y² + x²y³ + xy^4 – x^4 y – x³y² – x²y³ – xy^4 – y^5)
= x^5 – y^5
2.
Let x = a + b, y = c + d,
Then (a + b + c + d)(a + b – c – d)
= (a + b + c + d)(a + b – (c + d))
= (x + y)(x – y)
= x² – y²
= (a + b)² – (c + d)²
= (a² + 2ab + b²) – (c² + 2cd + d²)
= a² + b² – c² – d² + 2ab – 2cd
3.
Let (a_n)xⁿ + (a_(n – 1))x^(n – 1) + (a_(n – 2))x^(n – 2) + …… + (a_3)x³ + (a_2)x² + (a_1)x + a_0 be the polynomial, where n is any non-negative integer and n ≧ 3
Then [(a_n)xⁿ + (a_(n – 1))x^(n – 1) + (a_(n – 2))x^(n – 2) + …… + (a_3)x³ + (a_2)x² + (a_1)x + a_0](x – 2)
= [(a_n)x^(n + 1) + (a_(n – 1))xⁿ + (a_(n – 2))x^(n – 1) + …… + (a_3)x^4 + (a_2)x³ + (a_1)x² + (a_0)x] + [– 2(a_n)xⁿ – 2(a_(n – 1))x^(n – 1) – 2(a_(n – 2))x^(n – 2) – ……– 2(a_3)x³ – 2(a_2)x² – 2(a_1)x – 2(a_0)]
= (a_n)x^(n + 1) + [[(a_(n – 1)) – 2(a_n)]xⁿ + [(a_(n – 2)) – 2(a_(n – 1))]x^(n – 1) + …… + [(a_2) – 2(a_3)]x³ + [(a_1) – 2(a_2)]x² + [(a_0) – 2(a_1)]x] – 2(a_0)
∵This polynomial contains the term – 3x²
∴(a_1) – 2(a_2) = – 3
Let a_2 = t
∴(a_1) – 2t = – 3
a_1 = 2t – 3
∴The required polynomial is [(k_n)xⁿ + (k_(n – 1))x^(n – 1) + (k_(n – 2))x^(n – 2) + …… + (k_3)x³] + tx² + (2t – 3)x + u, where n is any non-negative integer and n ≧ 3, t and u, k_n, k_(n – 1), k_(n – 2), ……, k_3 are any real numbers