✔ 最佳答案
Rearrange the two equations as x2 + ( b / a ) x + ( c / a ) = 0 and x2 + ( q / p ) x + ( r / p ) = 0
Then by subtraction,
( b / a – q / p ) x + ( c / a – r / p ) = 0
( b / a – q / p ) x = r / p – c / a
x = ( ar – cp ) / ( bp – aq )
Then put it back into the equation, ( since there's a common root )
( ar – cp )2 / ( bp – aq )2 + ( b / a ) ( ar – cp ) / ( bp – aq ) + ( c / a ) = 0
( ar – cp )2 + ( b / a )( ar – cp )( bp – aq ) + ( c / a )( bp – aq )2 = 0
( ar – cq )2 + ( bp – aq ){ ( b / a ) ( ar – cp ) + ( c / a )( bp – aq ) } = 0
( ar – cq )2 + ( bp – aq )( abr – caq ) / a = 0
( ar – cq )2 = -( br – cq )( bp – aq )
Therefore (br – cq )( aq – bp ) = ( cq – ar )2