唔該幫我解呢題數,係A.maths

2007-07-21 6:25 am
如題,請詳列步驟
題目:
對於所有自然數n , 證
(n+1)(n+2)(n+3).......(n+n) = 2^n .1.3.5......(2n - 1)
更新1:

chocolate328154你好勁!! 你係咪大學生??? 有咩方法可以讀好A.maths ???

回答 (1)

2007-07-21 7:04 am
✔ 最佳答案
Let P (n) be the proposition (n+1)(n+2)(n+3).......(n+n) = 2n.1.3.5......(2n-1)

When n = 1,

L.H.S. = 1 + 1 = 2

R.H.S. = 21 = 2 = L.H.S.

Therefore P (1) is true.

Assume P ( k ) is true for some positive integers k.

i.e. (k+1)(k+2)(k+3).......(k+k) = 2k.1.3.5......(2k - 1)

When n = k + 1 ,

L.H.S. = (k+1+1)(k+2+1)(k+3+1).......(2k+ 2 – 2)(2k+ 2 – 1)( 2k + 2 )

= ( k + 1 )( k + 2 )( k + 3 )( k + 4 )……(2k)(2k+ 1)(2)

= 2k.1.3.5......(2k+1)(2)

= 2k+1.1.3.5......(2k+1)

R.H.S. = 2k.1.3.5......(2k+2-1)

= 2k+1.1.3.5......(2k+1)

= L.H.S.

Therefore P ( k + 1 ) is true.

By the principle of mathematical induction, P ( n ) is true for all positive integers n.
參考: My Maths Knowledge


收錄日期: 2021-04-23 19:49:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070720000051KK04887

檢視 Wayback Machine 備份