數學大難題!!!!(共9題)

2007-07-19 12:32 am
1.圖中的立體是由一個半球體和一個圓柱組成的,若圓柱體高度與底半徑的比是2:1,而此立體的總表面面積是252πcm2次,求
a.高度h
b.底半徑r
c.立體的體積(答案以π表示)
圖:(&b=2&(這個位係冇;的)f=190113)
http://www.wretch.cc/album/show.php?i=Puchikoyiu&b=2&f=1901133627&p=0
2.一個正方形體外接一個半徑是√8cm的球體,求
a.正方體的邊長
b.球體與正方體之間的體積(取π=3.14)
圖:(&b=2&(這個位係冇;的)f=190113)
http://www.wretch.cc/album/show.php?i=Puchikoyiu&b=2&f=1901133628&p=1
3.在圖中,ABCD是一個平行四邊珍,PA及PD分別是∠A及∠D的角平分線,證明∠APD=90度
圖:(&b=2&(這個位係冇;的)f=190113)
http://www.wretch.cc/album/show.php?i=Puchikoyiu&b=2&f=1901133629&p=2

回答 (1)

2007-07-19 2:33 am
✔ 最佳答案
1.According to the question, h=2r
a)總表面積
= 4Pi(r^2) / 2 + 2 Pi rh + Pi (r^2)
= 3Pi (r^2) + 2 Pi rh
= 3Pi (h/2)^2 + 2 Pi (h^2)/2
= 3/4 Pi h^2 + Pi h^2
= 7/4 Pi h^2

Hence,
7/4 Pi h^2 = 252 Pi
h^2 = 144
h = 12 (because h > 0)

b) h = 2r
12 = 2r
r = 6

c) 體積
= [1/2 x 4/3 Pi (6)^3 + Pi (6^2) x 12] cm^3
= 576 Pi cm^3


2a)Let a cm be the length of the side of the cube.
a^2 + (a^2 + a^2) = (2√8)^2
3a^2 = 32
a^2 = 32/3
a = √(32/3) (because a>0)
So the length of each side of the cube is √(32/3) cm.

b) Volume between the sphere and the cube
= {4/3 Pi (√8) ^ 3 - [√(32/3)]^3 } cm^3
= 59.90 cm^3 (corr. to 2 d.p.)

3.Let ∠PDC = x
Then ∠PDA = x
∠DAB = 180 degree - 2x (int. ∠s, AB//CD)\
∠DAP = ∠DAB/2 = 90 degree - x

In triangle DAP,
∠DAP + ∠PDA + ∠APD = 180 degree (∠ sum of triangle)
90 degree - x + x + ∠APD = 180 degree
Hence, ∠APD = 90 degree


收錄日期: 2021-04-13 00:48:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070718000051KK03053

檢視 Wayback Machine 備份