數學歸立法一問 好簡單

2007-07-18 4:49 am
求數學歸立法ga一條式
大家幫幫我 我要ga好簡單
就係....
2+ 2^2 + 2^3 + 2^4 + ... + 2^n = 咩咩咩丫?

※※※請大家 講低 :你係點搵到個 規律 嫁個時~※※※

講 廢話 者 別怪我對你...

回答 (2)

2007-07-18 5:34 am
✔ 最佳答案
2+ 2^2 + 2^3 + 2^4 + ... + 2^n = 2^(n+1) – 2
若你有注意數字的關係,將左方加上 2
則變成
2 + 2 + 2^2 + 2^3 + 2^4 + …. + 2^n
= (2 + 2) + 2^2 + 2^3 + 2^4 + …. + 2^n
= 2^2 + 2^2 + 2^3 + 2^4 + …. + 2^n
= (2^2 + 2^2) + 2^3 + 2^4 + …. + 2^n
= 2^3 + 2^3 + 2^4 + …. + 2^n
每次合併最左的兩項,會變成下一項,如此類推便
= 2^(n+1)
所以
2 + 2^2 + 2^3 + 2^4 + …. + 2^n = 2^(n+1) - 2

用歸納法證明
n = 1
LHS = 2
RHS = 2^(1+1) – 2 = 2
所以 n = 1 時成立。

設 n = k 時成立

2 + 2^2 + 2^3 + 2^4 + …. + 2^k = 2^(k+1) – 2

當 n = k+1

LHS
= 2 + 2^2 + 2^3 + 2^4 + …. + 2^k + 2^(k+1)
= 2^(k+1) – 2 + 2^(k+1)
= 2^(k+1) + 2^(k+1) – 2
= 2^(k+2) – 2
= 2^[(k+1)+1] – 2
所以當 n = k + 1 是亦成立,依數學歸納法的原則,所以當n為任何正整數時,這式成立。
2007-07-18 5:25 am
2+ 2^2 + 2^3 + 2^4 + ... + 2^n = 2^(n+1)-2
when n=1
2^1
=2^(1+1)-2
=RHS
it is assumed to be true when n=k
when n=k+1
2+2^2 + 2^3 + 2^4 + ... + 2^n
=2+2^2+....+2^k+2^n
=2^(k+1)-2+2^n
=2^(k+1)+2^(k+1)-2
=2^(k+2)-2
=2^(n+1)-2
=RHS
By the principle of mathmatical induction ,it is true for all natural no. n


收錄日期: 2021-04-13 00:49:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070717000051KK04727

檢視 Wayback Machine 備份