An ellipsoid(橢圓體) is a type of quadric surface that is a higher dimensional analogue of an ellipse(橢圓形). The equation of a standard ellipsoid body in an x-y-z Cartesian coordinate system is
x²/a² + y²/b² + z²/c² = 1
where a and b are the equatorial radii (along the x and y axes) and c is the polar radius (along the z-axis), all of which are fixed positive real numbers determining the shape of the ellipsoid.
http://en.wikipedia.org/wiki/Ellipsoid
(a)橢圓體的體積
要計算橢圓體的體積,必須先要計算橢圓形的面積。
http://en.wikipedia.org/wiki/Ellipse and
http://mathworld.wolfram.com/Ellipse.html have been introduced about ellipse in detail. By now I only want to tell you about some important properties about the ellipse in an x-y Cartesian coordinate system.
The equation of an ellipse in standard position in an x-y Cartesian coordinate system is
x²/a² + y²/b² = 1
where a and b represent the semimajor axis (or semiminor axis) and the semiminor axis (or semimajor axis) respectively, all of which are fixed positive real numbers determining the shape of the ellipsoid.
∵The ellipse is symmetric abount the x and y coordinate axes.
∴The area of ellipse is
4 ∫(0 to a)│y│dx
= 4 ∫(0 to a) b√(1 – x²/a²) dx
= 4b/a ∫(0 to a) √(a² – x²) dx
Let x = a sin θ , where – π/2 ≦ θ ≦ π/2
We have dx = a cos θ dθ and hence
4b/a ∫(0 to a) √(a² – x²) dx
= 4b/a ∫(0 to π/2) √(a² – a² sin² θ) (a cos θ) dθ
= 4ab ∫(0 to π/2) cos² θ dθ
= 2ab ∫(0 to π/2) (1 + cos 2θ) dθ
= 2ab [θ + (sin 2θ)/2] (0 to π/2)
= πab
現在回到正題,開始計算橢圓體的體積。
橢圓體體積的求法可將橢圓體沿z軸方向分成無數片橢圓形薄片,每片均垂直於z軸。
由於每片橢圓形薄片x軸方向的半徑都是位於橢圓形
x²/a² + z²/c² = 1之內
=> x = a√(1 – z²/c²)
=> x(z) = a√(1 – z²/c²)
由於每片橢圓形薄片y軸方向的半徑都是位於橢圓形
y²/b² + z²/c² = 1之內
=> y = b√(1 – z²/c²)
=> y(z) = b√(1 – z²/c²)
且橢圓體位於z軸方向的位置是由 – c去到c
∴橢圓體的體積
= ∫(– c to c) A(z) dz
= ∫(– c to c) πx(z)y(z) dz
= ∫(– c to c) πa√(1 – z²/c²) × b√(1 – z²/c²) dz
= πab ∫(– c to c) (1 – z²/c²) dz
= πab [z – z³/(3c²)] (– c to c)
= (4/3)πabc
(b)橢圓體的表面面積
這就非常複雜了!
橢圓體表面面積的公式,絕不像球體(equatorial radii a and b(along the x and y axes)= polar radius c(along the z-axis)的橢圓體)表面面積的公式S = 4πr²般簡單,是要用到去到大學先至教的微分幾何。
(本人懂得回答以下部分,並不代表本人懂得微分幾何,本人只是懂得抄而矣。)
The parametric equations of an ellipsoid can be written as
x = a cos θ sin φ
y = b sin θ sin φ
z = c cos φ
for azimuthal angle θ which belongs to [0,2π) and polar angle φ which belongs to [0,π].
In this parametrization, the coefficients of the first fundamental form are
E = (b² cos² θ + a² sin² θ) sin² φ
F = (b² – a²) cos θ sin θ cos φ sin φ
G = (a² cos² θ + b² sin² θ) cos² φ + c² sin² φ
The surface area of an ellipsoid is given by
S = ∫(0 to π) ∫(0 to 2π) √(EG – F²) dθ dφ
= ∫(0 to π) sin φ ∫(0 to 2π) √(a² b² cos² φ + c²(b² cos² θ + a² sin² θ) sin² φ) dθ dφ
= 2√2 b ∫(0 to π) (√(a² + c² + (a² – c²) cos 2φ)) sin φ E{(c/b)[√[(2(b² – a²))/(a² + c² + (a² – c²) cos 2φ)]] sin φ}
Where E(k) = E(π/2 , k) = ∫(0 to π/2) √(1 – k² sin² θ) dθ
http://mathworld.wolfram.com/EllipticIntegraloftheSecondKind.html
http://mathworld.wolfram.com/Ellipsoid.html