orthogonal matrix

2007-07-13 5:55 pm
2. Let A =0 .....0..... −2
...............0.... −2......0
............−2...... 0...... 3

.
(a) Find an orthogonal matrix P such that P−1AP is diagonal.
(b) Use (a) to show that A2n is positive definite for all positive integers n.

回答 (1)

2007-07-20 10:18 am
✔ 最佳答案
(a) 搵o左 D eigenvalue, λ_1, λ_2, λ_3 同 eigenvector, v_1, v_2, v_3 先 . . . then . . . normalize o左佢o地 . . . 咁應該會做到 P = [v_1, v_2, v_3] 當中 . . .
v_1 = [0, 1, 0]^t
v_2 = (1 / √5) [2, 0, 1]^t
v_3 = (1 / √5) [1, 0, - 2]^t
同埋 . . .
P^(- 1) A P = D = diag[λ_1, λ_2, λ_3] = diag[-2, -1, 4]
(b) 咁樣 . . .
A = P D P^(-1)
A^(2n) =
P D P^(-1) . . . P D P^(-1) = P D^(2n) P^(- 1)
\________ 2 n ________/

= P diag[(-2)^(2n), (-1)^(2n), 4^(2n)] P^(-1)
= P diag[4^n, 1, 16^n)] P^(-1)
對於任意向量 x = [x_1, x_2, x_3]^t . . .
x^t A^(2n) x = x^t P diag[4^n, 1, 16^n)] P^(-1) x
但 P 為 orthogonal,因此 P^(-1) = P^t . . .
x^t A^(2n) x = (P^t x)^t diag[4^n, 1, 16^n)] (P^t x)
跟住再做落去就會做到o架啦 ^^ ~


收錄日期: 2021-04-13 19:53:56
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070713000051KK00828

檢視 Wayback Machine 備份