[20分]兩條Trigonometric Relation question

2007-07-10 5:16 am
1) Use the compound angle formula for Sin(A+B) = sinAcosB + cosAsinB and sin((π/2)-A) = cosA to derive the formula for cos (A-B)

2) Express tan(A + B + C) in terms of tanA, tanB and tanC.

Please show ur steps.

回答 (1)

2007-07-10 5:31 am
✔ 最佳答案
cos(A-B)
= sin( π/2-(A-B) )
= sin(π/2 - A + B)
= sin(π/2 - A)cosB + cos(π/2 - A)sinB
= cosAcosB + sin( π/2 - (π/2 - A) )sinB
= cosAcosB + sinAsinB

tan(A + B + C)
= [ tan(A + B) + tanC ] / [ 1 - tan(A + B)tanC ]
= [ (tanA + tanB) / (1 - tanAtanB) + tanC ] / [ 1 - (tanA + tanB)tanC / (1 - tanAtanB) ]
= [ (tanA + tanB) + (1 - tanAtanB)tanC ] / [ (1 - tanAtanB) - (tanA + tanB)tanC ]
= (tanA + tanB + tanC - tanAtanBtanC) / (1 - tanAtanB - tanAtanC - tanBtanC)


收錄日期: 2021-04-19 17:32:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070709000051KK04543

檢視 Wayback Machine 備份