數學題(保證勁難)1

2007-07-08 7:12 am
WITHOUT DIRECT DIVISION, find the reminder of x¹ºº ÷ (x + 1)².

回答 (4)

2007-07-08 8:41 am
參考: My Maths knowledge
2007-07-10 6:41 am
餘式定理,
(x + 1)²=0
x=-1
reminder=f(-1) 設f(x)=x¹ºº
= (-1)¹ºº
=1
2007-07-08 8:46 am
Let f(x)=x^100

Let consider the reminder of f(x)/(x+1)

Sub x=-1 into f(x)

f(-1)=1

The reminder of f(x)/(x+1) is 1.

f(x)-1=x^100-1=(x^99-x^98+x^97-.....+x-1)(x+1)

Let g(x)=(x^100-1)/(x+1)

sub x=-1, g(x)=-1-1-1-1...-1-1=-100

(x+1) is a factor of g(x)+100

h(x)=[g(x)+100](x+1)=(x^100-1)+100(x+1)

h(x) can be divided by (x+1)^2

Expanding h(x)

x^100-1+100x+100=x^100+100x+99

That tell us that we need to add 100x+99 to x^100 , then it can be divided by (x+1)^2

Implied the reminder is -100x-99
2007-07-08 8:30 am
Let x be 0,

The equation is:

0¹ºº ÷ (0² + 2x0 +3)
= 0 ÷ 3
= 0


收錄日期: 2021-04-12 21:47:02
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070707000051KK04939

檢視 Wayback Machine 備份