Differentiation problem

2007-07-07 8:28 pm
Find the solution of y(dy/dx)=x(dy/dx)^2+1

回答 (1)

2007-07-11 1:01 pm
✔ 最佳答案
Solve y(dy/dx) = x(dy/dx)² + 1.

y(dy/dx) = x(dy/dx)² + 1
x(dy/dx)² – y(dy/dx) + 1 = 0
dy/dx = (2 × 1)/[– (– y) ± √((– y)² – 4x × 1)](Alternative formula of the Quadratic formula,詳見http://en.wikipedia.org/wiki/Quadratic_equation、http://upload.wikimedia.org/math/c/8/3/c83408410edd83ee8a000ffc046215cd.png和http://upload.wikimedia.org/math/4/0/1/40173100bede3def010ae511dacacc01.png)
dy/dx = 2/[y ± √(y² – 4x)]
dx/dy = [y ± √(y² – 4x)]/2

Let u = x/y²(點解要咁let?為咗將個y抽出嚟。)
x = uy²
dx/dy = 2uy + y² du/dy

∴The equation becomes
2uy + y² du/dy = [y ± √(y² – 4uy²)]/2
4uy + 2y² du/dy = y ± √(y²(1 – 4u))
2y² du/dy = y – 4uy ± y√(1 – 4u)
2y du/dy = 1 – 4u ± √(1 – 4u)
∫du/(1 – 4u ± √(1 – 4u)) = ∫dy/(2y)

Let v = √(1 – 4u)
u = (1 – v²)/4
du = – v/2 dv

∴∫[– v/(2(v² ± v))] dv = ∫dy/(2y)
∫– dv/(v ± 1) = ∫dy/y
– ln│v ± 1│= ln│y│+ C_1
ln│√(1 – 4u) ± 1│= – ln│y│+ C_2(C_2 = – C_1)
ln│√(1 – (4x)/y²) ± 1│+ ln│y│= C_2
ln│y√((y² – 4x)/y²) ± y│= C_2
y(1/y)√(y² – 4x) ± y = C_3(C_3 = e^(C_2))
√(y² – 4x) = C_3 (– or +) y
y² – 4x = (C_3)² (– or +) 2(C_3)y + y²
± 2(C_3)y = 4x + (C_3)²
y = ± 2x/(C_3) ± (C_3)/2
y = ± (C_4)x ± 1/(C_4)(C_4 = 2/(C_3) , C_4 ≠ 0)
y = Cx + 1/C(C = ± (C_4) , C ≠ 0)


備註:
(– or +)
即是 - (上-下+)
   +

2007-07-12 06:07:06 補充:
Sorry!由y(1/y)√(y² – 4x) ± y = C_3(C_3 = e^(C_2))呢行起開始打錯,應該改為│y(1/y)√(y² – 4x) ± y│= C_3(C_3 = e^(C_2))√(y² – 4x) ± y = ± C_3√(y² – 4x) ± y = C_4(C_4 = ± (C_3))√(y² – 4x) = C_4 (– or 十 ) yy² – 4x = (C_4)² (– or 十 ) 2(C_4)y 十 y²± 2(C_4)y = 4x 十 (C_4)²y = ± 2x/(C_4) ± (C_4)/2

2007-07-12 06:08:40 補充:
y = ± (C_5)x ± 1/(C_5)(C_5 = 2/(C_4) , C_5 ≠ 0)y = Cx 十 1/C(C = ± (C_5) , C ≠ 0)==========
參考: My App. Maths knowledge


收錄日期: 2021-04-14 00:06:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070707000051KK01570

檢視 Wayback Machine 備份