a-maths

2007-07-04 5:27 am
證明f(x)=1/(2x²+6x+8) 恆取正值,並f(x)的極大值。

回答 (1)

2007-07-04 5:34 am
✔ 最佳答案
2x² + 6x + 8

= 2(x² + 3x + 4)

= 2[x² + 3x + (3/2)²] - 2(3/2)² + 8

= 2(x + 3/2)² + 7/2 > 0

So, f(x) = 1 / (2x² + 6x + 8) > 0 for all real values of x.


From the above, the minimum value of 2x² + 6x + 8 = 7/2 when x = -3/2

So, maximum value of f(x)

= 1 / (7/2)

= 2/7
參考: Myself~~~


收錄日期: 2021-04-23 20:36:37
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070703000051KK04422

檢視 Wayback Machine 備份