Pure maths --- Infinite Sequences

2007-06-24 7:15 am
Question :

http://smcc.edu.hk/math/f67/exercises/Infinite%20Sequence%20(exercise).pdf

[Question 11(b)] --- I don't understand how we can assume that [(n+1)1/2n<...... (n+1)1/n]

Solution :

http://smcc.edu.hk/math/f67/exercises%20solution/Infinite%20Sequences%20(solution).pdf

回答 (2)

2007-06-24 7:46 am
參考: My Maths knowledge
2007-06-24 7:40 am
First,

1/(n+k) &lt; 1/n for all k = 1,2, ..., n.

Also,

1/(n+k) &gt; 1/(2n) for all k = 0,1,..., n-1.

So, we have

1/n + 1/(n+1) + 1/(n+2) +...+ 1/(2n) &lt; 1/n + 1/n + 1/n + ... + 1/n = (n+1) 1/n.

Similary, we have

1/n + 1/(n+1) + 1/(n+2) +...+ 1/(2n) &gt; 1/(2n) + 1/(2n) + 1/(2n) + ... + 1/(2n) = (n+1) 1/(2n).


收錄日期: 2021-04-13 00:40:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070623000051KK04849

檢視 Wayback Machine 備份