triangle intequality

2007-06-21 7:43 pm
if a,b and c are the length of three sides of a triangle,

show that

(a + b + c)^2 < 4(ab + bc + ca)

回答 (2)

✔ 最佳答案
a < b+c ⇒ a² < ab + ac
b < a+c ⇒ b² < ab + bc
c < a+b ⇒ c² < ac + bc

Summing up, we have
a² + b² + c² < 2(ab + ac + bc)
a² + b² + c² +2(ab + ac + bc) < 4(ab + ac + bc)

(a + b + c)² < 4(ab + bc + ca)

2007-06-21 12:13:07 補充:
好,哩鋪我要有 guts 唔取消答案,點都要鬥一鬥等人選。
2007-06-21 8:01 pm
依餘弦定理,在一個三角形中
a2 = b2 + c2 – 2bc cos A
b2 = a2 + c2 – 2ac cos B
c2 = a2 + b2 – 2ab cos C
將三式相加
a2 + b2 + c2 = 2(a2 + b2 + c2) – 2(ab cosC + ac cosB + bc cosA)
a2 + b2 + c2 = 2(ab cosC + ac cosB + bc cosA)
但因為 A、B、C 均不等於零度
cos A < 1
cos B < 1
cos C < 1
所以
2(ab + bc + ca) > 2(ab cosC + ac cosB + bc cosA)
因此
a2 + b2 + c2 < 2(ab + bc + ca)
a2 + b2 + c2 + 2(ab + bc + ca) < 4(ab + bc + ca)
(a + b + c)2 < 4(ab + bc + ca)
Q.E.D


收錄日期: 2021-04-13 13:41:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070621000051KK01157

檢視 Wayback Machine 備份