✔ 最佳答案
1. Since the straight line L passes through the point of intersection of the lines L1: 3x - 4y + 7 = 0 and L2: x - 3y + 2 = 0. So, let
the equation of line L:
3x - 4y + 7 + k(x - 3y + 2) = 0
(3 + k)x - (4 + 3k)y + (7 + 2k) = 0 ───── (*), where k is a constant.
Let m be the slope of line L. M be the slope of L3: y = 2x + 1
m = -[-(3 + k)/(4 + 3k)] = (3 + k)/(4 + 3k)
M = 2
Since the line L makes an acute angle of 45° with L3.
So, tan45° = │(M - m)/(1 + Mm)│
1 = │[2 - (3 + k)/(4 + 3k)]/{1 + 2[(3 + k)/(4 + 3k)]}│
1 = │[(5 - 5k)/(4 + 3k)]/[(10 + 5k)/(3 + k)]│
1 = │5(1 - k)/5(2 + k)│
2 + k = 1 - k or 2 + k = -1 + k
k = -1/2 or 3 = 0 (no solution)
Therefore, the equation of L:
(3 - 1/2)x - [4 + 3(-1/2)]y + [7 + 2(-1/2)] = 0
5x/2 -5y/2 + 5 = 0
x - y + 2 = 0
2. Mid point of AC = [(m + 1) + 1]/2 , [2 + (-1)]/2 = (m + 2)/2 , 1/2
Mid point of BD = (-2 + 3)/2 , [(-2) + (n + 3)]/2 = 1/2 , (n + 1)/2
If ABCD is a parallelogram, then the mid-point AC and that of BD should be the same point.
i.e. (m + 2)/2 = 1/2
m = -1
1/2 = (n + 1)/2
n = 0
2007-06-18 22:51:39 補充:
Amendment:So, tan45° = │(M - m)/(1 + Mm)│1 = │[2 - (3 + k)/(4 + 3k)]/{1 + 2[(3 + k)/(4 + 3k)]}│1 = │[(5 + 5k)/(4 + 3k)]/[(10 + 5k)/(3 + k)]│1 = │5(1 + k)/5(2 + k)│2 + k = 1 + k or 2 + k = -1 - kk = -3/2 or 1 = 0 (no solution)
2007-06-18 22:52:52 補充:
Therefore, the equation of L:(3 - 3/2)x - [4 + 3(-3/2)]y + [7 + 2(-3/2)] = 03x/2 + y/2 + 4 = 03x + y + 8 = 0
2007-06-19 18:22:43 補充:
任何經過L1和L2相交的那一點的直線都可設七的方程為3x - 4y + 7 + k(x - 3y + 2) = 0。因為L satisfy呢個條件,所以佢自然可以設為這方程。