幾何問題(本來我只想係打四個字o既題目,但係畀個sysytem強迫打多d字,好無癮,yahoo唔應該咁做)

2007-06-16 9:31 pm
http://joyimage.com/467373e2339b9.jpeg
O is the center of the semicircle ABCD and AB= BC. Show that BO//CD.
更新1:

1.Leona@童心‧童夢: 你證明呢個,用o既係咩理由? BC=AB = 弧BC=弧AB = ∠CDB=∠BDA 2.vrigo3: 點解你會話 angle BAO = angle BOA = y ( base angle isos. triangle) 邊個講果個係isos. triangle?

回答 (3)

2007-06-16 10:09 pm
✔ 最佳答案



圖片參考:http://joyimage.com/467373e2339b9.jpeg

(1)
BC=AB
=>弧BC=弧AB
=>∠CDB=∠BDA

(2)
DO和BO均為圓O的半徑
=>DO=BO
=>∠OBD=∠ODB
∠CDB=∠BDA
=>∠CDB=∠OBD
=>CD//BO


2007-06-19 23:30:55 補充:
-------------------------------------------以代號表示:(1)BC=AB(2)=> 弧BC=弧AB(3)=> ∠CDB=∠BDA 其實(1)都可以直接推出(3)ga la,這是由於等弦(即BC和AB)所對應的圓周角(即∠CDB和∠BDA )相等,只係自己想寫埋(2)清楚一d。

2007-06-19 23:32:50 補充:
-------------------------------------------至於樓下的人兄的回答:angle BAO = angle BOA = y ( base angle isos. triangle)其實我覺得原來該是:angle BAO = angle ABO = y ( base angle isos. triangle)(因為OA=OB)只是一時打錯吧!希望vrigo3不要介意,只係想順便回埋。

2007-06-20 00:51:26 補充:
-------------------------------------------唔記得講返:"這是由於等弦(即BC和AB)所對應的圓周角(即∠CDB和∠BDA )相等"這句的大前提是在同一個圓中。
2007-06-25 7:24 am
arc BC: arc AB=∠CDB:∠BDA (arcs prop. to ∠s at ☉ce)
1:1=∠CDB:∠BDA
∠CDB=∠BDA
OD=OB (radii)
∠BDA=∠DBO (base ∠s,isos.△)
∵∠CDB=∠BDA (proved)
∠BDA=∠DBO (proved)
∴∠DBO=∠CDB
∴BO//CD (alt. ∠s equal)
2007-06-16 10:24 pm
let angle BDO = x , angle BAO = y
angle BAO = angle BOA = y ( base angle isos. triangle)
angle BDO = angle DBO = x ( base angle isos. triangle)
so, angle BOA = 2x ( ext. angle of triangle)
angle CDB =x ( abgle at center = twice angle at circumference)
so, angle CDO = angle BOA = 2x
so, CD//BO ( converse of corr. angle, CD//BO)

2007-06-25 12:58:09 補充:
第2個step打錯左,真係十分對不起。應該是︰ angle BAO = angle ABO = y (base angle isos. triangle)
參考: me


收錄日期: 2021-04-23 17:02:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070616000051KK02046

檢視 Wayback Machine 備份