✔ 最佳答案
5^2x 4^(y+1) =25
log[5^2x 4^(y+1)]=log25
log 5^2x+log4^(y+1)=log5^2
2xlog5+2(y+1)log2=2log5
xlog5+(y+1)log2=log5 --------------(1)
4^x 5^2y =1
log[4^x 5^2y]=log 1
log4^x+log5^2y=0
2xlog2+2ylog5=0
x=-(ylog5/log2) -------------(2)
sub (2) into (1)
-(ylog5/log2)log5+(y+1)log2=log5
y[(log 2}^2 - (log 5)^2]=log2(log5-log2)
y(log 2+ log 5)(log2 - log5)=log2(log5-log2)
y=-log2/(log5+log2)=-log2/log(5*2)=-log2/log10=-log2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Let Q(n):1+√5)^n + (1 -√5)^n is divisible by 2^n
For n=1,
(1+√5) + (1 -√5)=2 is divisible by 2
Assume Q(k) is true
(1+√5)^k + (1 -√5)^k =(2^k)m for m is integer
For n = k+1,
諗諗先..
2007-06-15 16:16:37 補充:
eiffeltam的方法真妙...不過我想補充一點...就是證明 S(k) = 2S(k-1) 4S(k-2)
2007-06-15 16:16:51 補充:
2S(k-1) 4S(k-2)=2[(1 √5)^(k-1) (1 -√5)^(k-1)] 4[(1 √5)^(k-2) (1 -√5)^(k-2)]=(1 √5)^(k-2)[2(1 √5) 4] (1 -√5)^(k-2)[ 2(1 -√5) 2]=(1 √5)^(k-2)[1 2√5) 5] (1 -√5)^(k-2)[ 1 -2√5 5]=(1 √5)^(k-2)(1 √5)^2 (1 -√5)^(k-2)(1 -√5)^2=(1 √5)^k (1 -√5)^k=S(k)