Binomial (誠邀 Ivan 同豬油包)

2007-06-14 8:47 pm
Given 1/(x-r) (x-r+1)(x-r+2)=1/2(x+r) - 1/x+r+1+ 1/2(x+r+2)
Note:C(n,r) = nCr=n!/(n-r)!r!
(a)
By considering the expansion of (1+x)^n and (1+x)^(n+2)
show C(n+2, r+2)=2C(n,r+1)+C(n, r+2)
(b)
show(n+2)! /x(x+1)(x+2)....(x+n+2)= summation r from 0 to (n+2) (-1)^r C(n+2,r) / (x+r)
(c)
use the above, show
(n+2)!/ 2x(x+1)(x+2).....(x+n+2)=C(n,0)/x(x+1)(x+2)- C(n,1)/(x+1)(x+2)(x+3)+...+
(-1)^n C(n,n)/(x+n)(x+n+1)(x+n+2)
更新1:

sorry, (a) is By considering the expansion of (1+x)^n and (1+x)^(n+2) show C(n+2, r+2)= C(n,r)+ 2C(n,r+1)+C(n, r+2) for 0

更新2:

sorry, (a) is By considering the expansion of (1+x)^n and (1+x)^(n+2) show C(n+2, r+2)= C(n,r)+ 2C(n,r+1)+C(n, r+2) for 0

更新3:

我都無計喇, 學校考試出左,我想知番點做, 求証一下姐! E次考試好深, 個個都無佢收!

回答 (4)

2007-06-18 3:55 am
✔ 最佳答案
這條實在不容易。若果未做過類似題目﹐大概無可能臨場諗到。

圖片參考:http://in.geocities.com/myisland8132/yahooknowledge/7007061401337.gif
參考: A comprehensive course in pure mathematics : Algebra I learner's series second edition / by CS Lee
2007-06-20 5:50 pm
唔好意思, 近排冇上網~
myisland8132 答得好好!
2007-06-18 11:42 pm
Very good! :)
2007-06-15 5:05 am
a)
consider (1+x)^(n+2) = (1+x)^2 (1+x)^n

(1+x)^(n+2)
= (x^2 + 2x + 1) [ 1 + C(n,1)x + ... + C(n,r)x^r + C(n,r+1)x^(r+1) + C(n,r+2)x^(r+2) + ... ]

matching coefficient of x^(r+2),
C(n+2,r+2) = (1)C(n,r) + (2)C(n,r+1) + (1)C(n,r+2)

completed

出到咁深考人,等陣果兩 parts 等陣左 post 比你


收錄日期: 2021-04-25 16:53:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070614000051KK01337

檢視 Wayback Machine 備份