麻煩,我想你們幫我解釋一下...公式 (中三) 急用

2007-06-14 1:12 am
∠s at a pt.
∠ sum of polygon
sum of ext. ∠s of polygon
corr. ∠s, ≣△s
corr. sides, ≣△s
Pyth. theorem (thm)
converse of Pyth. theorem (thm)
sides opp., equal ∠s
opp. sides of //gram
opp. ∠s of //gram
diags. of //gram
opp. sides equal
opp. ∠s equal
diags. bisect each other
2 sides equal and //
property of isos.△
property of //gram
property of rhombus
mid-pt. theorem (thm)
intercept theorem (thm)


麻煩,我想你們幫我解釋一下...

回答 (3)

2007-06-14 1:52 am
✔ 最佳答案
∠s at a pt.
圍住一點的角加埋 = 360°

∠ sum of polygon
n邊形的內角和 = 180(n-3)°

sum of ext. ∠s of polygon
任何n邊形的外角和 = 360°

corr. ∠s, ≣△s
corr. sides, ≣△s

Pyth. theorem (thm)
一個直角三角形,鄰邊² + 對邊² = 斜邊²

converse of Pyth. theorem (thm)
如果 ΔABC 中,AB² = AC² + CB², 即是 ∠ACB = 90°

sides opp., equal ∠s
如果 ΔABC 中,∠B = ∠C, 那麼 AB = AC

opp. sides of //gram
平行四邊形對邊相等

opp. ∠s of //gram
平行四邊形對角相等

diags. of //gram
平行四邊形對角線相交且互相平分

opp. sides equal
opp. ∠s equal
diags. bisect each other
上面的逆定理,即是證明它是 //gram。

2 sides equal and //
用以證明是 //gram: 平行的兩條邊相等,難道不是//gram?

property of isos.△
只要是等腰三角形就可以用

property of //gram
只要是平行四角形就可以用

property of rhombus
只要是菱形就可以用

mid-pt. theorem (thm)
有平行線時候用,
ABC is triangle, AEB, AFC 是直線, EF // BC, E is mid-pt of AB, then F is mid-pt of AC.

逆定理
ABC is triangle, AEB, AFC 是直線, E is mid-pt of AB and F is mid-pt of AC, then EF // BC

intercept theorem (thm)
AEHB, CFKD 是直線, EF // HK, AE : EH : HB = CF : FK : KD

2007-06-13 17:53:27 補充:
∠ sum of polygon n邊形的內角和 = 180(n-2)°
2007-06-14 1:39 am
∠s at a pt. (同頂角)
∠ sum of polygon (多邊形內角和)
sum of ext. ∠s of polygon (多邊形外角和)
corr. ∠s, ≣△s
corr. sides, ≣△s
Pyth. theorem (thm) (畢氏定理)
converse of Pyth.(thm) theorem (畢氏定理的逆定理)
sides opp., equal ∠s (對邊等角相等)
opp. sides of //gram (平行四邊形對邊)
opp. ∠s of //gram (平行四邊對角)
diags. of //gram (平行四邊形對角線)
opp. sides equal (對邊相等)
opp. ∠s equal (對角對等)
diags. bisect each other (平行四邊形對角線相平分)
2 sides equal and // (二組對邊相等且平行)
property of isos.△ (等腰三角形性質)
property of //gram (平行四邊形性質)
property of rhombus (菱形性質)
mid-pt. theorem (thm) (中點定理)
intercept theorem (thm) (截線定理)
2007-06-14 2:05 am
∠s at a pt.
∠ sum of polygon
sum of ext. ∠s of polygon
corr. ∠s, ≣△s
corr. sides, ≣△s
Pyth. theorem (thm)
converse of Pyth. theorem (thm)
sides opp., equal ∠s
opp. sides of //gram
opp. ∠s of //gram
diags. of //gram
opp. sides equal
opp. ∠s equal
diags. bisect each other
2 sides equal and //
property of isos.△
property of //gram
property of rhombus
mid-pt. theorem (thm)
intercept theorem (thm)


麻煩,我想你們幫我解釋一下...



















∠s at a pt. (同頂角)
∠ sum of polygon (多邊形內角和)
sum of ext. ∠s of polygon (多邊形外角和)
corr. ∠s, ≣△s
corr. sides, ≣△s
Pyth. theorem (thm) (畢氏定理)
converse of Pyth.(thm) theorem (畢氏定理的逆定理)
sides opp., equal ∠s (對邊等角相等)
opp. sides of //gram (平行四邊形對邊)
opp. ∠s of //gram (平行四邊對角)
diags. of //gram (平行四邊形對角線)
opp. sides equal (對邊相等)
opp. ∠s equal (對角對等)
diags. bisect each other (平行四邊形對角線相平分)
2 sides equal and // (二組對邊相等且平行)
property of isos.△ (等腰三角形性質)
property of //gram (平行四邊形性質)
property of rhombus (菱形性質)
mid-pt. theorem (thm) (中點定理)
intercept theorem (thm) (截線定理)


∠s at a pt.
圍住一點的角加埋 = 360°

∠ sum of polygon
n邊形的內角和 = 180(n-3)°

sum of ext. ∠s of polygon
任何n邊形的外角和 = 360°

corr. ∠s, ≣△s
corr. sides, ≣△s

Pyth. theorem (thm)
一個直角三角形,鄰邊² + 對邊² = 斜邊²

converse of Pyth. theorem (thm)
如果 ΔABC 中,AB² = AC² + CB², 即是 ∠ACB = 90°

sides opp., equal ∠s
如果 ΔABC 中,∠B = ∠C, 那麼 AB = AC

opp. sides of //gram
平行四邊形對邊相等

opp. ∠s of //gram
平行四邊形對角相等

diags. of //gram
平行四邊形對角線相交且互相平分

opp. sides equal















opp. ∠s equal
diags. bisect each other
上面的逆定理,即是證明它是 //gram。

2 sides equal and //
用以證明是 //gram: 平行的兩條邊相等,難道不是//gram?

property of isos.△
只要是等腰三角形就可以用

property of //gram
只要是平行四角形就可以用

property of rhombus
只要是菱形就可以用

mid-pt. theorem (thm)
有平行線時候用,
ABC is triangle, AEB, AFC 是直線, EF // BC, E is mid-pt of AB, then F is mid-pt of AC.

逆定理
ABC is triangle, AEB, AFC 是直線, E is mid-pt of AB and F is mid-pt of AC, then EF // BC

intercept theorem (thm)
AEHB, CFKD 是直線, EF // HK, AE : EH : HB = CF : FK : KD
∠ sum of polygon
n邊形的內角和 = 180(n-2)°


收錄日期: 2021-04-16 12:08:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070613000051KK02785

檢視 Wayback Machine 備份