n physics, Hawking radiation is thermal radiation thought to be emitted by black holes due to quantum effects. It is named after British physicist Stephen Hawking who worked out the theoretical argument for its existence in 1974. Hawking's discovery became the first convincing insight into quantum gravity. However, the existence of Hawking radiation remains controversial.
Black holes are sites of immense gravitational attraction into which surrounding matter is drawn by gravitational forces. Classically, the gravitation is so powerful that nothing, not even radiation, can escape from the black hole. However, by doing a calculation in the framework of quantum field theory in curved spacetimes, Hawking showed quantum effects allow black holes to emit radiation in a thermal spectrum.
Physical insight on the process may be gained by imagining that particle antiparticle radiation is emitted from just beyond the event horizon. This radiation does not come directly from the black hole itself, but rather is a result of virtual particles being "boosted" by the black hole's gravitation into becoming real particles.
A more precise, but still much simplified view of the process is that vacuum fluctuations cause a particle-antiparticle pair to appear close to the event horizon of a black hole. One of the pair falls into the black hole whilst the other escapes. In order to fill the energy 'hole' left by the pair's spontaneous creation, energy tunnels out of the black hole and across the event horizon. By this process the black hole loses mass, and to an outside observer it would appear that the black hole has just emitted a particle.
Black hole evaporation
When particles escape, the black hole loses a small amount of its energy and therefore of its mass (recall that mass and energy are related by Einstein's famous equation E = mc²).
2007-06-08 11:46:57 補充:
http://en.wikipedia.org/wiki/Black_holes