✔ 最佳答案
a) i)common chord : C1 – C2 = 0
x²+y²+2x-4y+1 – (x²+y²-4x-10y+19) =0
6x + 6y -18 = 0
i.e. x + y -3 = 0
ii)
Family of circles passes through A and B:
x²+y²+2x-4y+1 + k (x + y -3) = 0
x²+y² +(2+k)x + (k-4)y +(1 -3k) = 0
Let the centre of circle C be G.
G lies on AB, so G[-(2+k)/2, -(k-4)/2] satisfied line AB.
x + y -3 = 0
-(2+k)/2 -(k-4)/2 – 3 = 0
2+k + k-4 +6 = 0
2k = -4
k = -2
∴eq : x²+y² +(2+k)x + (k-4)y +(1 -3k) = 0
x²+y² -6y +7 = 0
b)
Centre G: (0,3)
rC3 = | (x + y -3)/√(1²+1²)|
= |(0+3-3)/√2|
= 0
i.e.
eq: x² - (y-3)² = 0
2007-06-07 15:21:43 補充:
b)部份有更正:Center G is the same as the centre of C1, but not the smallest circle. Sorry for that.So, G [-2/2, -(-4)/2] = (-1, 2)rC3 = | (x y -3)/√(1² 1²)|= |(-1 2-3)/√2|= 2/√2= √2i.e. eq: (x 1)² (y-2)² = (√2)²