A-maths!

2007-06-03 8:10 am
試求直線2x-y+7=0相切,且與圓x^2+y^2-6y-8=0同心圓之方程。

回答 (2)

2007-06-03 8:20 am
✔ 最佳答案
Let the equation of the required circle be:
x² + y² - 6y + k = 0

(Since the required circle has the same centre as the circle x² + y² - 6y - 8 = 0)


{x² + y² - 6y + k = 0 ───── (1)
{2x - y + 7 = 0, i.e. y = 2x + 7 ───── (2)

Sub (2) into (1):

x² + (2x + 7)² - 6(2x + 7) + k = 0
5x² + 16x + (7 + k) = 0

Since they touch each other at one point,

∴ Δ = 0

i.e. (16)² - 4(5)(7 + k) = 0
256 - 140 - 20k = 0
k = 29/5

So, the equation of the required circle:

x² + y² - 6y + 29/5 = 0

5x² + 5y² - 30y + 29 = 0


參考: Myself~~~
2007-06-03 8:20 am
圓心 = (0,3)
半徑 = ! 2(0) - 3 + 7 ! / sqrt(5) = 4 / sqrt(5)

方程
x^2 + (y - 3)^2 = 16/5
化簡, 得答案


收錄日期: 2021-04-23 20:33:10
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070603000051KK00045

檢視 Wayback Machine 備份