tan??

2007-05-31 9:55 pm
If tanX=3/5 and 0<90,then find the values of

3sinX+2cosX.

pls.

回答 (2)

2007-05-31 10:07 pm
✔ 最佳答案
Since tan X= 3/5
Then we can draw a right angle triangle with opp. side =3 and adj.side=5.
Use Pyth.theorm,
hy. side = sq.root(3^2+5^2)=sq.root(34)

so
sinX=3/sq.root(34) and
cosX=5/sq.root(34)

then
3sinX+2cosX
=3*3/sq.root(34)+2*5/sq.root(34)
=19/sq.root(34)
=19*sq.root(34)/34
2007-05-31 10:08 pm
您可畫一個直角三角形,opposite side 是 3,adjacent side 是 5, 用 Pythagoras' Theorem, 找出 hypotenuse 是 √( 3² + 5² ) = √34

那問題就簡單了,sin X = 3 / √34, cos X = 5 / √34, 因為 0 < X < 90, 按照 CAST,所有sine, cosine values 都是正數

3 sin X + 2 cos X = (3 x 3 + 2 x 5) / √34 = 19 / √34


收錄日期: 2021-04-12 19:52:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070531000051KK01495

檢視 Wayback Machine 備份