Intequality and Quadratic equation

2007-05-28 10:16 pm
Q1 (4k^2 - 2k + 7)x^2 + (2k - 7)x^2 + 3 => 0

find the range of k for all real values of x

Q2 (-3k^2 + 4k - 9)x^2 - (2k^2 - 3k + 31) = 0

find the range of x for all real values of k

回答 (3)

2007-05-28 11:25 pm
參考: My Maths knowledge
2007-06-01 1:13 am


1)
(4k^2 - 2k + 7)x^2 + (2k - 7)x^2 + 3 => 0
delta <= 0 and 4k^2 - 2k + 7 > 0
(2k - 7)^2 - 4(4k^2 - 2k + 7)(3) <= 0
4k^2 - 28k + 49 - 48k^2 + 24k - 84 <= 0
-44k^2 - 4k - 35 <= 0
44k^2 + 4k + 35 => 0
hence,all real values of k.

2)
(-3k^2 + 4k - 9)x^2 - (2k^2 - 3k + 31) = 0
since -3k^2 + 4k - 9 < 0 and
2k^2 - 3k + 31 > 0 for all real values of k
hence,no solution.
參考: eason mensa
2007-05-28 11:05 pm
Q1

(4k^2 - 2k + 7)x^2 + (2k - 7)x^2 + 3
= (4k^2)x^2 + 3
if (4k^2 - 2k + 7)x^2 + (2k - 7)x^2 + 3 =&gt; 0 is true for all real x
then , (4k^2)x^2 + 3 =&gt; 0 is true for all real x
since 4k^2 =&gt; 0 for all real value of k
hence, for all real value of k , (4k^2)x^2 + 3 =&gt; 0 for all value of x

Q2

(-3k^2 + 4k - 9)x^2 - (2k^2 - 3k + 31) = 0

x^2 = (2k^2 - 3k + 31)/(-3k^2 + 4k - 9)

x = √((2k^2 - 3k + 31)/(-3k^2 + 4k - 9))
or
x = - √((2k^2 - 3k + 31)/(-3k^2 + 4k - 9))


收錄日期: 2021-04-13 13:42:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070528000051KK01663

檢視 Wayback Machine 備份