為甚麼1600, 1700, 1800年等等不是閠年?

2007-05-27 6:07 am
我想﹕這條問題可能和數學有關......

回答 (3)

2007-05-31 5:02 am
✔ 最佳答案
現時世界普遍採用的公曆是格列高里曆,它的前身是儒略曆。根據儒略曆的規定,每4年有1個閏年,閏年為366日,其餘3年(稱為平年)各有365日。公元年數能被4除得盡的是閏年。儒略曆1年平均長365.25日,比實際公轉週期的365.2422日長11分14秒,即每400年約長3日。

教皇格列高里十三世於1582年宣佈改曆,改變置閏規則。公元年數被4除盡的是閏年,但如被100除得盡而被400除不盡的則不是閏年。這樣的做法可在400年中減少3個閏年。在格列高里曆下,400年中有97個閏年(每年366日)及303個平年(每年365日),所以每年平均長365.2425日,與公轉週期的365.2422日十分接近。

根據公曆的置閏規則,2000被4及400整除,所以公元2000年是閏年。但1700,1800及1900因不被400整除,所以不是閏年



依照四年一閏的法則,一年的平均長度是日,和上述一年的日數仍有相當距離。原來目前我們所用的曆法還有另一條規則,就是如果世紀年頭兩個位組成的數字不能被 4 整 除,便不作閏年計。如此說 1900 年的 19 不能被 4 整 除,所以 1900 年便不是閏年,相反 2000 年就是閏年了。由於每四百年只有一個世紀年是閏年 (例如 1600, 2000, 2400… 等),反過來說即是每四百年少了三個閏年,所以一年的平均長度便會變成365.25 - 3 / 400 = 365.2425 日,這和 365.2422 日已經很相近了。


至於它們之差別,就需要通過改變時間來修正了。
陽曆每年有365天,每四年閏年一次(366天), 逢百 (對世紀年)不閏,逢四百又閏(使四百年內少閏三次)。換句話說:每四百年有閏年九十七次,閏年時二月多一天。

1500年
平年。雖然可以被四整除應為閏年,但每一百年少閏一次。

1600年
閏年。可以被四整除應為閏年,雖然每逢一百年應少閏一次,但每逢四百年又需多閏一次(每四百年閏年97次)。

1700、1800、1900年
平年。雖然可以被四整除應為閏年,但每一百年少閏一次。

2000年
閏年。可以被四整除應為閏年,雖然每逢一百年應少閏一次,但每逢四百年又需多閏一次(每四百年閏年97次)。
2007-05-27 8:27 am
很 多 人 都 知 道 , 較 準 確 的 說 法 是 一 年 有 365.2422 太 陽 日 。 為 了 避 免 長 久 累 積 這 0.2422 日 而 出 現 誤 差 , 我 們 有 4 年 一 閏 的 解 決 辦 法 , 普 通 年 是 365 日 , 但 閏 年 則 有 366 日 , 而 多 出 的 一 天 便 安 插 在 2 月 最 後 一 天 之 後 。 心 思 細 密 的 讀 者 會 注 意 到 , 四 年 一 閏 即 每 年 平 均 有 365.25 日 , 比 一 年 的 真 實 日 數 多 了 0.0078 日 , 誤 差 雖 小 , 但 數 百 年 累 積 下 來 便 不 得 了 , 所 以 曆 法 規 定 , 可 以 被 100 除 盡 的 年 份 不 置 閏 ( 例 如 1700 、 1800 、 1900 ) , 但 可 以 被 400 除 盡 的 年 份 則 保 持 置 閏 ( 例 如 2000 、 2400 、 2800 ) , 因 此 , 每 400 年 便 少 了 3 個 閏 年 , 即 平 均 一 年 少 0.0075 日 , 每 年 誤 差 為 0.0003 日 , 或 每 3000 年 誤 差 不 多 於 一 天 。 這 種 曆 法 稱 為 公 曆 或 格 里 哥 曆 。
2007-05-27 6:16 am
凡每世紀的最後一年都不定為潤年,據說是調正潤日的不足數。一年有365又1/4天,但不是真的6小時1秒不差,100年才扣回1天,6小時的誤差其實仍是很少。


收錄日期: 2021-04-13 00:32:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070526000051KK04895

檢視 Wayback Machine 備份