mathematical induction

2007-05-26 2:59 am
prove by induction,for all positive integers n,
1.n + 2.(n - 1) + 3.(n - 2) + ... + (n - 2).3 + (n - 1).2 + n.1 = (1/6)(n)( n + 1)( n + 2)

回答 (2)

2007-05-26 3:21 am
✔ 最佳答案
Let P(n) be 1.n + 2.(n - 1) + 3.(n - 2) + ... + (n - 2).3 + (n - 1).2 + n.1 = (1/6)(n)( n + 1)( n + 2)
When n = 1,

L.H.S.
=1*1
=1

R.H.S.
= (1/6)(1)( 1 + 1)( 1 + 2)
= 1

As L.H.S. = R.H.S.
So P(1) is true.

Assume P(k) is true, i.e. 1.k + 2.(k - 1) + 3.(k - 2) + ... + (k - 2).3 + (k - 1).2 + k.1 = (1/6)(k)( k + 1)( k + 2)
When n = k+1,

L.H.S.
=1.(k+1) + 2.(k ) + 3.(k - 1) + ... + (k - 1).3 + (k ).2 + (k+1).1
= 1.(k+1) + 2.(k-1+1) + 3.(k - 2 + 1) + ... + (k - 2 + 1).3 + (k-1+1).2 + (k+1).1
= [1.k + 2.(k - 1) + 3.(k - 2) + ... + (k - 2).3 + (k - 1).2 + k.1 ]+[1+2+3+...(k+1)]
= (1/6)(k)( k + 1)( k + 2) + (k+1)(k+2)/2
{by the assumption and the formula of the sum of 1+2+3+...+n}
=1/6(k+1)(k+2)(k+3)
=1/6(k+1)(k+1+1)(k+1+2)
= R.H.S.

So P(k+1) is true.

By Mathematical Induction, 1.n + 2.(n - 1) + 3.(n - 2) + ... + (n - 2).3 + (n - 1).2 + n.1 = (1/6)(n)( n + 1)( n + 2) is true for all positive integer of n.
2007-05-26 3:30 am
1.1 = (1/6)(1)(1+1)(1+2)

assume
1.k + 2.(k - 1) + ... + (k - 1).2 + k.1 = (1/6)(k)( k + 1)( k + 2)

1.(k+1) + 2.(k) + ... + (k).2 + (k+1).1
= [ 1.k + 2.(k - 1) + ... + k.1 ] + [ 1 + 2 + ... + k ] + (k+1).1
= (1/6)(k)( k + 1)( k + 2) + k(k+1)/2 + (k+1)
= (1/6)(k+1)(k+2)(k+3) by simplying

just give you important steps and you finish other statement, OK ?


收錄日期: 2021-04-13 13:41:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070525000051KK03120

檢視 Wayback Machine 備份