✔ 最佳答案
Let P(n) be 1.n + 2.(n - 1) + 3.(n - 2) + ... + (n - 2).3 + (n - 1).2 + n.1 = (1/6)(n)( n + 1)( n + 2)
When n = 1,
L.H.S.
=1*1
=1
R.H.S.
= (1/6)(1)( 1 + 1)( 1 + 2)
= 1
As L.H.S. = R.H.S.
So P(1) is true.
Assume P(k) is true, i.e. 1.k + 2.(k - 1) + 3.(k - 2) + ... + (k - 2).3 + (k - 1).2 + k.1 = (1/6)(k)( k + 1)( k + 2)
When n = k+1,
L.H.S.
=1.(k+1) + 2.(k ) + 3.(k - 1) + ... + (k - 1).3 + (k ).2 + (k+1).1
= 1.(k+1) + 2.(k-1+1) + 3.(k - 2 + 1) + ... + (k - 2 + 1).3 + (k-1+1).2 + (k+1).1
= [1.k + 2.(k - 1) + 3.(k - 2) + ... + (k - 2).3 + (k - 1).2 + k.1 ]+[1+2+3+...(k+1)]
= (1/6)(k)( k + 1)( k + 2) + (k+1)(k+2)/2
{by the assumption and the formula of the sum of 1+2+3+...+n}
=1/6(k+1)(k+2)(k+3)
=1/6(k+1)(k+1+1)(k+1+2)
= R.H.S.
So P(k+1) is true.
By Mathematical Induction, 1.n + 2.(n - 1) + 3.(n - 2) + ... + (n - 2).3 + (n - 1).2 + n.1 = (1/6)(n)( n + 1)( n + 2) is true for all positive integer of n.